Answer:
3.14x7.6=23.864 because raidus is the disctance around one circle
Step-by-step explanation:
Answer:
the answer would be x>-7/3
The curve has been attached and the answer choices are:
y = 3x² – 2x + 1
y = 3x² – 6x + 3
y = 3x²<span> – 7x + 1
</span>
The attached graph has a vertex in the first quadrant. Therefore, the coordinates of the vertex would be both positive.
Let's start with first equation:
y = 3x² – 2x + 1
using the equation of axis:
x = -b/2a
x = 2/6
x = 1/3
SUbstituting the value of x in the main equation to get the y-coordinate of the vertex.
y = 3(1/3)² – 2(1/3) + 1
y = 3/9 – 2/3 + 1
y = 1/3 – 2/3 + 1
y = (1 - 2 + 3)/3
y = 2/3
Hence, the vertex would be:
(h,k) = (1/3 , 2/3)
Also, the leading coefficient is positive, so the parabola would be concave up.
Thus the final answer choice will be:
y = 3x² – 2x + 1
Answer:
14x + 8
Explanation:
⇒ 4(5x+5) - 3(2x + 4)
distribute inside parenthesis
⇒ 4(5x) + 4(5) - 3(2x) - 3(4)
multiply the variables
⇒ 20x + 20 - 6x - 12
collect like terms
⇒ 20x - 6x + 20 - 12
subtract like term
⇒ 14x + 8
Answer:
(x-5)^2+(y+4)^2=100
Step-by-step explanation:
As we know the given points
Center = (5, -4)
and
Point on circle = (-3,2)
The distance between point on circle and center will give us the radius of circle
So,
The formula for distance is:

The standard form of equation of circle is:

where h and k are the coordinates of the center. So putting in the value:
