1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
8

The product of x and 5

Mathematics
1 answer:
USPshnik [31]3 years ago
6 0

Answer: The product of x and 5 is 5x

You might be interested in
What is the perimeter of this square? A. 26.5 ft B. 26 ft C. 24.5 ft D. 13 ft
SSSSS [86.1K]
We would have to see the square to determine that
7 0
2 years ago
Read 2 more answers
Find the value of 48 - 32 ÷ 4 · 2
Crazy boy [7]

Answer:

=48-8×2

=48-16

=32

Hope it helps you..

6 0
2 years ago
Read 2 more answers
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
URGENT These are just 3 easy fill in the blank math problems.
elena-14-01-66 [18.8K]

Answer:

1. minus

2. srry i dunno this one

3. minus (again)

6 0
3 years ago
Read 2 more answers
Only 4 please i need it by tomorrow
seraphim [82]
No she is not correct she needs to go back to school and learn math 
8 0
2 years ago
Other questions:
  • A manufacturer of skis produces two types: downhill and cross country. The times required for manufacturing and finishing each s
    13·1 answer
  • Compare and contrast equation notation and function notation
    9·1 answer
  • How are 2^-3 and 2^3 are related
    11·2 answers
  • What is the average of the integers from 25-41
    12·2 answers
  • What is the median of the data set?<br><br> 87, 98, 106, 82, 111, 120
    13·1 answer
  • Six friends went to a baseball game.The price of the admission per person was $x.Three of the friends bought a hot dog for $3. W
    5·1 answer
  • A 3 liter bottle of juice costs $5.70<br> What is the unit price for 1 liter of juice?
    8·2 answers
  • I need help with this question....
    14·1 answer
  • 3(6x - 4) = 22x
    13·1 answer
  • K-6 3/8=4 6/7 helppppppppop
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!