For a you have to solve 2 solutions , first 2x=12
6=x then you plug that back in, 12+8y=12
8y=0
y=0
(6,0)
To solve this we are going to use the future value of annuity ordinary formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

Since the deposit is made semiannually, it is made 2 times per year, so

.
Since the type of the annuity is ordinary, payments are made at the end of each period, and we know that we have 2 periods, so

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=6200[ \frac{(1+ \frac{0.06}{2} )^{(2)(5)} -1}{ \frac{0.06}{2} } ]](https://tex.z-dn.net/?f=FV%3D6200%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.06%7D%7B2%7D%20%29%5E%7B%282%29%285%29%7D%20-1%7D%7B%20%5Cfrac%7B0.06%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$71,076.06</span>
Answer:
C
Step-by-step explanation:
We are dining the value that is $92 fewer or less than she did on the 7th. On the 7th, she had $48. Subtracting $92, we get $48 - $98 = -$44 = money she had on the 14th. Therefore, the answer is C.
Answer:

Step-by-step explanation:
Given
--- heaviest
--- second heaviest
Required
The difference (d)
This is calculated as:
