Answer:
The bolts with diameter less than 5.57 millimeters and with diameter greater than 5.85 millimeters should be rejected.
Step-by-step explanation:
We have been given that the diameters of bolts produced in a machine shop are normally distributed with a mean of 5.71 millimeters and a standard deviation of 0.08 millimeters.
Let us find the sample score that corresponds to z-score of bottom 4%.
From normal distribution table we got z-score corresponding to bottom 4% is -1.75 and z-score corresponding to top 4% or data above 96% is 1.75.
Upon substituting these values in z-score formula we will get our sample scores (x) as:


Therefore, the bolts with diameters less than 5.57 millimeters should be rejected.
Now let us find sample score corresponding to z-score of 1.75 as upper limit.


Therefore, the bolts with diameters greater than 5.85 millimeters should be rejected.
314.16 yards^2 for the Area
The possible digits could be 0, 1, 2, 3, or 4 as they would cause the entire number to round down instead of up.
Your answer ---> D . 2 2/9
Answer:
P (X ≤ 4)
Step-by-step explanation:
The binomial probability formula can be used to find the probability of a binomial experiment for a specific number of successes. It <em>does not</em> find the probability for a <em>range</em> of successes, as in this case.
The <em>range</em> "x≤4" means x = 0 <em>or</em> x = 1 <em>or </em>x = 2 <em>or</em> x = 3 <em>or</em> x = 4, so there are five different probability calculations to do.
To to find the total probability, we use the addition rule that states that the probabilities of different events can be added to find the probability for the entire set of events only if the events are <em>Mutually Exclusive</em>. The outcomes of a binomial experiment are mutually exclusive for any value of x between zero and n, as long as n and p don't change, so we're allowed to add the five calculated probabilities together to find the total probability.
The probability that x ≤ 4 can be written as P (X ≤ 4) or as P (X = 0 or X = 1 or X = 2 or X = 3 or X = 4) which means (because of the addition rule) that P(x ≤ 4) = P(x = 0) + P(x = 1) + P (x = 2) + P (x = 3) + P (x = 4)
Therefore, the probability of x<4 successes is P (X ≤ 4)