Answer:
Step-by-step explanation:
\mathrm{Multiply\:the\:numerator\:and\:denominator\:by:}\:100
\mathrm{Multiply\:the\:quotient\:digit}\:\left(0\right)\:\mathrm{by\:the\:divisor}\:505
\mathrm{Subtract}\:0\:\mathrm{from}\:23
Answer:
The equation of the line that passes through the points (0, 3) and (5, -3) is
.
Step-by-step explanation:
From Analytical Geometry we must remember that a line can be formed after knowing two distinct points on Cartesian plane. The equation of the line is described below:
(Eq. 1)
Where:
- Independent variable, dimensionless.
- Dependent variable, dimensionless.
- Slope, dimensionless.
- y-Intercept, dimensionless.
If we know that
and
, the following system of linear equations is constructed:
(Eq. 2)
(Eq. 3)
The solution of the system is:
,
. Hence, we get that equation of the line that passes through the points (0, 3) and (5, -3) is
.
Answer:
the top left picture is a function
Step-by-step explanation:
it is a function because the line does not go over the same x-value more then once.
Answer:
(-1.5, 0) and (0, -6)
Step-by-step explanation: