Answer: The loser's card shows 6.
Explanation: Let's start by naming the first student A and the second student B.
Since the product of A and B are either 12, 15, or 18, let's list every single possibility, the first number being A's number and the second number being B's number.
1 12
1 15
1 18
2 6
2 9
3 4
3 5
3 6
4 3
5 3
6 2
6 3
9 2
12 1
15 1
18 1
Now, the information says that A doesn't know what B has, so we can immediately cross off all of the combinations that have the integer appearing once and once ONLY off, because if it happened once only, A would know of it straight away. Now, our sample space becomes much smaller.
1 12
1 15
1 18
2 6
2 9
3 4
3 5
3 6
6 2
6 3
Using this same logic, we know that we can cross off all of the digits that occur only once in B's column.
2 6
3 6
Now, A definitely knows what number B has because there is only one number left in B. Hence, we can conclude that the loser, B, has the integer 6.
Okay! I drew the graph and I got Point Q is 0.1 unit to the right of 1.
Knowing the order of the numbers is the best way to get the answer.
25% = 0.25
40 / 0.25 = 160
40 is 25% of 160.
There are 160 children in the club.
If you've started pre-calculus, then you know that the derivative of h(t)
is zero where h(t) is maximum.
The derivative is h'(t) = -32 t + 96 .
At the maximum ... h'(t) = 0
32 t = 96 sec
t = 3 sec .
___________________________________________
If you haven't had any calculus yet, then you don't know how to
take a derivative, and you don't know what it's good for anyway.
In that case, the question GIVES you the maximum height.
Just write it in place of h(t), then solve the quadratic equation
and find out what 't' must be at that height.
150 ft = -16 t² + 96 t + 6
Subtract 150ft from each side: -16t² + 96t - 144 = 0 .
Before you attack that, you can divide each side by -16,
making it a lot easier to handle:
t² - 6t + 9 = 0
I'm sure you can run with that equation now and solve it.
The solution is the time after launch when the object reaches 150 ft.
It's 3 seconds.
(Funny how the two widely different methods lead to the same answer.)
The answer is from AL2006