1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
3 years ago
12

Which of the following is a true statement?

Mathematics
1 answer:
Lelu [443]3 years ago
4 0

Answer:

OC)

Step-by-step explanation:

FOE EXAMPLE:

4<u>8</u><u>8</u> eight is divisable by 4

1,222,2<u>1</u><u>6</u>

You might be interested in
Helppppppppppppppoppp
Cloud [144]

Answer:

I am pretty sure it is A. relation, i hope it is right.

hope that helps *^^*

3 0
3 years ago
Please help me!!!!!​
denpristay [2]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π               → A = π - (B + C)

                                               → B = π - (A + C)

                                               → C = π - (A + B)

Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]

Use the following Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → RHS:</u>

LHS:                        sin A - sin B + sin C

                             = (sin A - sin B) + sin C

\text{Sum to Product:}\quad 2\cos \bigg(\dfrac{A+B}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad 2\cos \bigg(\dfrac{\pi -(B+C)}{2}+\dfrac{B}{2}}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad =2\cos \bigg(\dfrac{\pi -C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

.\qquad \qquad =2\cos \bigg(\dfrac{\pi}{2} -\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Cofunction:} \qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]

\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]

\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{LHS = RHS:}\quad 4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)=4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\quad \checkmark

6 0
2 years ago
What is the factored form of this expression? x^9-1,000
Tems11 [23]

Answer:

x^9-1,0^3

and you can use Microsoft maths solver to help you it help solve and explain how to do the math

4 0
2 years ago
Ming works as a quality assurance analyst at a bottling factory. She wants to use a one-sample z interval to estimate what propo
Nastasia [14]

Answer:

Sample size is n=423

Step-by-step explanation:

Given that,

Margin of error =4%

Confidence level =90%

Suppose, sample proportion=0.5

        i.e. \hat{P}=0.5

We know that,

     Margin of error =2^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n} }

 ∴ 1.64\sqrt{\frac{0.5(0.5)}{n} } \leq 4\%

\Rightarrow 1.64\sqrt{\frac{0.25}{n} } \leq 0.04

\Rightarrow \frac{0.5}{\sqrt{n} } \leq \frac{0.04}{1.64}

\Rightarrow \frac{0.5}{\sqrt{n} } \leq 0.0243

\Rightarrow \sqrt{n}\geq \frac{0.5}{0.0243}

\Rightarrow \sqrt{n}\geq 20.57

squaring on both side,

∴ n=423.1249

Hence, the sample size is,

   n=423

Hence, the correct option is (b).

       

7 0
3 years ago
HELP PLEASE ASAP I WILL MARK BRAINLIEST
prisoha [69]

Answer:

BC = 24

Step-by-step explanation:

FD = 36, FE = 15 and CD = 18

By secant theorem.

DE • DF = CD • DB

(36 - 15) • 36 = 18 • DB

DB = 42

BC = DB - CD

BC = 42 - 18

BC = 24

PLEASE MARK ME AS BRAINLIEST AND HAVE A NICE DAY :)

3 0
2 years ago
Other questions:
  • HELP PLEASE!!!!!!!!!!!!!!!
    13·1 answer
  • Solve for x in the equation x - 4 = 7.<br>A. X = -3<br>B. x = 11<br>C. x = 28<br>D. x = 3​
    6·2 answers
  • 5. this gate contains a series if congruent quadrilaterals. Are the quadrilaterals also parallelograms? Explain.
    14·1 answer
  • Which triangle can be proven congruent to triangle ABC?
    14·2 answers
  • 1.60 divided by 20
    10·2 answers
  • For five days Vicki recorded the temperature outside. The temperature (°F) was 36.9°, 34.6°, 37°, 40.2°, 32.8°. About what was t
    7·2 answers
  • Heeeeelp!! I can't figure it out! :(
    12·1 answer
  • Wesley walked 11 miles in 4 hours. If he walked the same distance every hour, how far did he walk in one hour? Using only feet
    10·1 answer
  • Can someone help me pls
    10·1 answer
  • √(7+√(24))÷2+√(7−√(24))÷2​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!