I think that it is 3/4 slope
we can pretty much split the middle part into two trapezoids. Check the picture below.
so we really have one trapezoid and one square, each twice, so simply let's get the area of the trapezoid and sum it up with the area of the square, twice, and that's the area of the shape.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{\textit{parallel sides}}{bases}\\[-0.5em] \hrulefill\\ h=5\\ a=3\\ b=7 \end{cases}\implies A=\cfrac{5(3+7)}{2}\implies A=25 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{sum of areas}}{[25+(3\cdot 3)]}\cdot \stackrel{twice}{2}\implies [34]2\implies \underset{in^2}{68}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7B%5Ctextit%7Bparallel%20sides%7D%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D5%5C%5C%20a%3D3%5C%5C%20b%3D7%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B5%283%2B7%29%7D%7B2%7D%5Cimplies%20A%3D25%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsum%20of%20areas%7D%7D%7B%5B25%2B%283%5Ccdot%203%29%5D%7D%5Ccdot%20%5Cstackrel%7Btwice%7D%7B2%7D%5Cimplies%20%5B34%5D2%5Cimplies%20%5Cunderset%7Bin%5E2%7D%7B68%7D)
Answer:
<em>(-17, -21)</em>
Step-by-step explanation:
When reflected across the x-axis, the signs of the x-coordinates will flip.
(A negative becomes positive, and a positive becomes negative.)
Answer:
4.9
Step-by-step explanation: