When a function is shifted to the right by 1 unit it is moved towards the negative side so we would be adding -1 to the value of x. The function f(x) would be f(x-1). To determine the resulting function, we substitute to the parent function (x-1) to x. We do as follows:
<span>f (x) = x^3 + 2x^2 − 3x − 5
</span>f (x-1) = (x-1)^3 + 2(x-1)^2 − 3(x-1) − 5
f (x-1) = x^3 - 3x^2 + 3x - 1 + 2(x^2 - 2x + 1) - 3x + 3 - 5
f (x-1) = x^3 - 3x^2 + 2x^2 + 3x - 4x - 3x - 1 + 2 + 3 - 5
f (x-1) = <span>x^3 - x^2 - 4x - 1
Therefore, the correct answer is the last option.</span>
Answer:
≈33.3%
Step-by-step explanation:
First we find the difference of the heights to see what the growth was
24-18 = 6
Then we find what percent 6 is of 18 to see what percentage growth occured
6/18 ≈33.3%
Answer/Step-by-step explanation:
To find out the mistake of the student, let's find the min, max, median, Q1 and Q3, which make up the 5 important values that are represented in a box plot.
Given, {2, 3, 5, 6, 10, 14, 15},
Minimum value = 2
Median = middle data point = 6
Q1 = 3 (the middle value of the lower part of the data set before the median)
Q3 = 14 (middle value of the upper part of the data set after the median)
Maximum value = 15
If we examine the diagram the student created, you will observe that he plotted the median wrongly. The median, which is represented by the vertical line that divides the box, ought to be at 6 NOT 10.
See the attachment below for the correct box plot.