Answer:
Maximum error for viscosity is 17.14%
Step-by-step explanation:
We know that everything is changing with respect to the time, "r" is changing with respect to the time, and also "p" just "v" will not change with the time according to the information given, so we can find the implicit derivative with respect to the time, and since

The implicit derivative with respect to the time would be

If we multiply everything by dt we get

Remember that the error is given by
therefore doing some algebra we get that

Since, r = 0.006 , dr = 0.00025 , p = 4*105 , dp = 2000 we get that

Which means that the maximum error for viscosity is 17.14%.
I think 2 but I might be wrong
Answer:

Step-by-step explanation:
<u>Given </u><u>:</u><u>-</u><u> </u>
And we need to find the potential solutions of it. The given equation is the logarithm of x² - 25 to the base e . e is Euler's Number here. So it can be written as ,
<u>Equation</u><u> </u><u>:</u><u>-</u><u> </u>
<u>In </u><u>general</u><u> </u><u>:</u><u>-</u><u> </u>
- If we have a logarithmic equation as ,
Then this can be written as ,
In a similar way we can write the given equation as ,
- Now also we know that
Therefore , the equation becomes ,
<u>Hence</u><u> the</u><u> </u><u>Solution</u><u> </u><u>of </u><u>the</u><u> given</u><u> equation</u><u> is</u><u> </u><u>±</u><u>√</u><u>2</u><u>6</u><u>.</u>
First convert the mixed number to a fraction: 1 5/6 = 11/6.