First, converting R percent to r a decimal
r = R/100 = 6%/100 = 0.06 per year,
putting time into years for simplicity,
4 months ÷ 12 months/year = 0.333333 years,
then, solving our equation
I = $ 376.00
I = 18800 × 0.06 × 0.333333 = 375.999624
I = $ 376.00
The simple interest accumulated
on a principal of $ 18,800.00
at a rate of 6% per year
for 0.333333 years (4 months) is $ 376.00.
SOLUTION
This is a binomial probability. For i, we will apply the Binomial probability formula
i. Exactly 2 are defective
Using the formula, we have

Note that I made the probability of being defective as the probability of success = p
and probability of none defective as probability of failure = q
Exactly 2 are defective becomes the binomial probability

Hence the answer is 0.1157
(ii) None is defective becomes

hence the answer is 0.4823
(iii) All are defective

(iv) At least one is defective
This is 1 - probability that none is defective

Hence the answer is 0.5177
Using the Empirical Rule, it is found that:
- a) Approximately 99.7% of the amounts are between $35.26 and $51.88.
- b) Approximately 95% of the amounts are between $38.03 and $49.11.
- c) Approximately 68% of the amounts fall between $40.73 and $46.27.
------------
The Empirical Rule states that, in a <em>bell-shaped </em>distribution:
- Approximately 68% of the measures are within 1 standard deviation of the mean.
- Approximately 95% of the measures are within 2 standard deviations of the mean.
- Approximately 99.7% of the measures are within 3 standard deviations of the mean.
-----------
Item a:


Within <em>3 standard deviations of the mean</em>, thus, approximately 99.7%.
-----------
Item b:


Within 2<em> standard deviations of the mean</em>, thus, approximately 95%.
-----------
Item c:
- 68% is within 1 standard deviation of the mean, so:


Approximately 68% of the amounts fall between $40.73 and $46.27.
A similar problem is given at brainly.com/question/15967965