1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
3 years ago
15

Sam opened a money-market account that pays 2% simple interest. He started the account with $7,000 and made no further

Mathematics
1 answer:
Viefleur [7K]3 years ago
6 0

Answer:

the awnser is D

Step-by-step explanation:

You might be interested in
Johan can get lunch at Joe’s Deli for $12, and he can get lunch at Majestic for $8. In one month, Johan spent $96 on lunches (an
Triss [41]

Answer: D

Step-by-step explanation:

It’s really obvious just circle D

4 0
2 years ago
Make a number line and show all values of x such that... <br><br> x&lt;-1 or x&gt;1
oee [108]

Answer:

I am I supposed to make a number line.

Step-by-step explanation:

7 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Gena wants to estimate the quotient of –21.87 divided by 4.79. Which expression shows the estimate using front-end estimation?
allochka39001 [22]
-21/5 is the closest!!!

Hope this helps.

If you want me to explain why, just ask! :)
7 0
2 years ago
Read 2 more answers
Tyler used 1 1/2 gallons of paint to paint 5/7 of a fence. How many gallons will it take to paint the whole fence?
Mademuasel [1]

9514 1404 393

9514 1404 393

Answer:

  1) (1 1/2)(7/5) = g

  2) (1 1/2)/(5/7) = g

Step-by-step explanation:

1) Tyler has painted 5/7 of the 7/7 of the fence. So the total amount of the fence is (7/7)/(5/7) = 7/5 as much as what was already painted.

The total amount of paint needed is then 7/5 the amount already used:

  g = (7/5)(1 1/2) . . . . . gallons of paint needed for the whole fence

__

2) If g gallons are required for the whole fence, the amount used so far for 5/7 of the fence is 5/7 of the quantity required:

  (5/7)g = 1 1/2

  g = (1 1/2)/(5/7) . . . . division expression for the paint needed

3 0
3 years ago
Other questions:
  • Solve 4-(7x-1)+3 using the distibutive property
    9·1 answer
  • A triangular side of the Transamerica Pyramid Building in San Francisco, California, is 149 feet at its base. If the distance fr
    7·2 answers
  • Suppose triangle TIP and triangle TOP are isosceles triangles. Also suppose that TI=5, PI=7, and PO=11. What are all the possibl
    15·1 answer
  • Factor each expression<br> 1. 3n + 9<br> 2. t² + 4t<br> 3. 15 + 20x
    12·1 answer
  • True or false. log 10 14,000,000 is between 7 and 8
    8·1 answer
  • IF YOU ARE CORRECT I WILL MARK YOU AS BRAINLIEST! Look at the image below.
    10·1 answer
  • Find an odd natural numbers x such that LCM (x, 40) = 1400​
    8·1 answer
  • Witch ones are bigger. <br> a. 5/9 or 11/18<br><br> b. 3/8 or 4/9
    7·2 answers
  • All ping-pong tables are on sale for 25% off at Tables 'N Stuff. The
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=9x%5E%7B2%7D" id="TexFormula1" title="9x^{2}" alt="9x^{2}" align="absmiddle" class="latex-form
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!