Divide 4 on each side and X will be = to 5
4x/4 = 20/4
X = 5
The non-algebraic functions are called transcendental functions. This include the logarithmic function. The definition of Logarithmic Function with Base a is as follows:
![For \ x\ \textgreater \ 0, \ a \ \textgreater \ 0, \ and \ a \neq 1 \\ \\ y=log_{a}x \ if \ and \ only \ if \ x=a^{y} \\ \\ Then: \\ \\ f(x)=log_{a}x \\ \\ is \ called \ the \ logarithmic \ function \ with \ base \ a.](https://tex.z-dn.net/?f=For%20%5C%20x%5C%20%5Ctextgreater%20%5C%200%2C%20%5C%20a%20%5C%20%5Ctextgreater%20%5C%200%2C%20%5C%20and%20%5C%20a%20%5Cneq%201%20%5C%5C%20%5C%5C%20y%3Dlog_%7Ba%7Dx%20%5C%20if%20%5C%20and%20%5C%20only%20%5C%20if%20%5C%20x%3Da%5E%7By%7D%20%5C%5C%20%5C%5C%20Then%3A%20%5C%5C%20%5C%5C%20f%28x%29%3Dlog_%7Ba%7Dx%20%5C%5C%20%5C%5C%20is%20%5C%20called%20%5C%20the%20%5C%20logarithmic%20%5C%20function%20%5C%20with%20%5C%20base%20%5C%20a.)
We know that the equations is:
![y=log(10x)](https://tex.z-dn.net/?f=y%3Dlog%2810x%29)
So let's solve each case:
Case 1
![x=\frac{1}{100} \\ \\ y=log(10(\frac{1}{100})) \\ \\ \therefore y=log(\frac{1}{10}) \\ \\ \therefore y=-1 \\ \\ So: \\ \\ \boxed{\ x=\frac{1}{100}} \ matches \ to \ \boxed{y=-1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%7D%7B100%7D%20%5C%5C%20%5C%5C%20y%3Dlog%2810%28%5Cfrac%7B1%7D%7B100%7D%29%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3Dlog%28%5Cfrac%7B1%7D%7B10%7D%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3D-1%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5C%20x%3D%5Cfrac%7B1%7D%7B100%7D%7D%20%5C%20matches%20%5C%20to%20%5C%20%5Cboxed%7By%3D-1%7D)
Case 2
![x=\frac{1}{10} \\ \\ y=log(10(\frac{1}{10})) \\ \\ \therefore y=log(1) \\ \\ \therefore y=0 \\ \\ So: \\ \\ \boxed{\ x=\frac{1}{10}} \ matches \ to \ \boxed{y=0}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%7D%7B10%7D%20%5C%5C%20%5C%5C%20y%3Dlog%2810%28%5Cfrac%7B1%7D%7B10%7D%29%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3Dlog%281%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3D0%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5C%20x%3D%5Cfrac%7B1%7D%7B10%7D%7D%20%5C%20matches%20%5C%20to%20%5C%20%5Cboxed%7By%3D0%7D)
Case 3
![x=1 \\ \\ y=log(10(1)) \\ \\ \therefore y=log(10) \\ \\ \therefore y=1 \\ \\ So: \\ \\ \boxed{\ x=1} \ matches \ to \ \boxed{y=1}](https://tex.z-dn.net/?f=x%3D1%20%5C%5C%20%5C%5C%20y%3Dlog%2810%281%29%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3Dlog%2810%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3D1%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5C%20x%3D1%7D%20%5C%20matches%20%5C%20to%20%5C%20%5Cboxed%7By%3D1%7D)
Case 4
![x=10 \\ \\ y=log(10(10)) \\ \\ \therefore y=log(100) \\ \\ \therefore y=2 \\ \\ So: \\ \\ \boxed{\ x=10} \ matches \ to \ \boxed{y=2}](https://tex.z-dn.net/?f=x%3D10%20%5C%5C%20%5C%5C%20y%3Dlog%2810%2810%29%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3Dlog%28100%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3D2%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5C%20x%3D10%7D%20%5C%20matches%20%5C%20to%20%5C%20%5Cboxed%7By%3D2%7D)
Case 5
![x=100 \\ \\ y=log(10(100)) \\ \\ \therefore y=log(1000) \\ \\ \therefore y=3 \\ \\ So: \\ \\ \boxed{x=100} \ matches \ to \ \boxed{y=3}](https://tex.z-dn.net/?f=x%3D100%20%5C%5C%20%5C%5C%20y%3Dlog%2810%28100%29%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3Dlog%281000%29%20%5C%5C%20%5C%5C%20%5Ctherefore%20y%3D3%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7Bx%3D100%7D%20%5C%20matches%20%5C%20to%20%5C%20%5Cboxed%7By%3D3%7D)
Hello from MrBillDoesMath!
Answer: line EF
Discussion: Two lines, L1 and L2, with slopes m1 and m2 are perpendicular if
m1 * m2 = -1. In our case m1 = -1/3 so the slope of the perpendicular line is 3.
( 3 * (-1/3) = -1). The line with slope 3 is rising as x gets larger. The only line shown fitting this is line EF. Note that line AB is "falling" as x increases so it can not possibly be the answer.
Regards, MrB
The point that describes the intersection of line m and line n is; Point W
<h3>How to interpret Intersection of Planes?</h3>
Intersection of the two lines is defined as the point where the two lines cross or meet each other.
It is given that the lines m and n intersect each other, which means that they must be intersecting each other at some point.
From the figure, it can be seen that in plane A, the lines m and n intersect each other at point W, thus point W is the point of intersection of the two line m and n.
Read more about Intersection of Planes at; brainly.com/question/10955258
#SPJ1