When the thermal energy of the air around a fire is transferred to the surrounding air A. The thermal energy is spread out by the surrounding air.
Thermal energy transfers occur in 3 approaches conduction, convection, and radiation. whilst thermal power is transferred among neighboring molecules that are in touch with each other, which is referred to as conduction.
Thermal strength refers to the power contained inside a system that is liable for its temperature. heat is the go with the flow of thermal electricity. an entire department of physics, thermodynamics, offers how heat is transferred among exceptional systems and how work is accomplished in the manner.
Thermal strength also referred to as heat strength is produced when a rise in temperature reasons atoms and molecules to transport quicker and collide with each other. The energy that comes from the temperature of the heated substance is referred to as thermal strength.
Learn more about Thermal energy here:-brainly.com/question/19666326
#SPJ9
The correct answer to your question is: <span>C) tin (IV) bromide, SnBr₄</span>
B the girls arm will act as a pulley
Answer:
1.552 moles
Explanation:
First, we'll begin by writing a balanced equation for the reaction showing how C8H18 is burn in air to produce CO2.
This is illustrated below:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Next, let us calculate the number of mole of C8H18 present in 22.1g of C8H18. This is illustrated below:
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 = 22.1g
Mole of C8H18 =..?
Number of mole = Mass /Molar Mass
Mole of C8H18 = 22.1/144
Mole of C8H18 = 0.194 mole
From the balanced equation above,
2 moles of C8H18 produced 16 moles of CO2.
Therefore, 0.194 mole of C8H18 will produce = (0.194x16)/2 = 1.552 moles of CO2.
Therefore, 1.552 moles of CO2 are emitted into the atmosphere when 22.1 g C8H18 is burned