Answer:
<em>ATP</em> or <em>Adenosine triphosphate</em> is the chief compounds which are used by the living things to store energy.
Explanation:
<em>ATP</em> is the compound that captures the chemical energy released through the degradation of food. It <em>stores</em> the captured energy and <em>releases</em> it at the time of need experienced by the organism.
It is made up of adenine, ribose sugar, and a phosphate group. It is produced in a cell organelle called <em>mitochondria</em> through a process called <em>respiration</em>.
Answer:
14 CO₂ will be released in the second turn of the cycle
Explanation:
<u>Complete question goes like this</u>, "<em>The CO2 produced in one round of the citric acid cycle does not originate in the acetyl carbons that entered that round. If acetyl-CoA is labeled with 14C at the carbonyl carbon, how many rounds of the cycle are required before 14CO2 is released?</em>"
<u>The answer to this is</u>;
- The labeled Acetyl of Acetyl-CoA becomes the terminal carbon (C4) of succinyl-CoA (which becomes succinate that is a symmetrical four carbon diprotic dicarboxylic acid from alpha-ketoglutarate).
- Succinate converts into fumarate. Fumarate converts into malate, and malate converts into oxaloacetate. Because succinate is symmetrical, the oxaloacetate can have the label at C1 or C4.
- When these condense with acetyl-CoA to begin the second round of the cycle, both of these carbons are discharged as CO2 during the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase reactions (formation of alpha-ketoglutarate and succinyl-CoA respectively).
Hence, 14 CO₂ will be released in the second turn of the cycle.
Answer is: <span>nondisjunction.
</span>Nondisjunction<span> is the failure of </span>homologous chromosomes<span> to separate correctly during </span>cell division, because of tha daughter cells have abnormal chromosome numbers. This example is <span>failure of a pair of </span>homologous chromosomes<span> to separate in </span><span>meiosis I.</span>
In metaphase I of meiosis I, the pairs of homologous chromosomes, also known as bivalents or tetrads, line up in a random order along the metaphase plate. The random orientation is another way for cells to introduce genetic variation.
Answer:
An explanation inspires new questions and the process of making new observations.
Explanation: