Answer:
y=-2x+8
Step-by-step explanation:
y-y1=m(x-x1)
y-4=-2(x-2)
y-4=-2x+4
y=-2x+4+4
y=-2x+8
By applying the formulas of present and future values of annuity we can solve this problem. In this mortgage problem, first we have to find loan amount after the down payment. It is 699,000 - 699,000 * 0.2 = 559,200$. We have to set it as PV (Present Value) of annuity. Using the PV formula
, we first find A, which is an annual payment. Exact calculation with mortgage calculator gives us A = 33,866.56$. After finding it, plugging this number into FV (Future Value) formula
, we find the value of the future value and it is 1,185,329.66$. And the total financial charge is 1,185,329.66 - 559,200 = 626,129.66$
Answer:
40/12 & 3 1/3
Step-by-step explanation:
honestly i can't give a good explanation, if the answer is not right, please someone comment, and i'll fix it.
So since the vertex falls onto the axis of symmetry, we can just solve for that to get the x-coordinate of both equations. The equation for the axis of symmetry is
, with b = x coefficient and a = x^2 coefficient. Our equations can be solved as such:
y = 2x^2 − 4x + 12: 
y = 4x^2 + 8x + 3: 
In short, the vertex x-coordinate's of y = 2x^2 − 4x + 12 is 1 while the vertex's x-coordinate of y = 4x^2 + 8x + 3 is -1.
The answer might be 39,600