There are a few ways you can go about solving this question. One way is to use the given information to find how many tons of flour can be processed in one hour. If 27 tons can be processed in 3 hours, we can do 27 divided by 3 to find that 9 tons of flour can be processed per hour. Then, if we want to see how many tons of flour can be processed in 8 hours, we can multiply 9 tons by 8 hours to get a total of 72 tons of flour.
I hope this helps.
now, there are 12 months in a year, so 18 months is really 18/12 of a year, thus
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill & \$4000\\ P=\textit{original amount deposited}\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ t=years\to \frac{18}{12}\dotfill &\frac{3}{2} \end{cases} \\\\\\ 4000=P[1+(0.05)(\frac{3}{2})]\implies 4000=P(1.075) \\\\\\ \cfrac{4000}{1.075}=P\implies 3720.93\approx P](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5Cdotfill%20%26%20%5C%244000%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5C%5C%20r%3Drate%5Cto%205%5C%25%5Cto%20%5Cfrac%7B5%7D%7B100%7D%5Cdotfill%20%260.05%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B18%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%204000%3DP%5B1%2B%280.05%29%28%5Cfrac%7B3%7D%7B2%7D%29%5D%5Cimplies%204000%3DP%281.075%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B4000%7D%7B1.075%7D%3DP%5Cimplies%203720.93%5Capprox%20P)
The answer is r = p/2n - x/n