Answer:
<h3>The value C(t) of the car after 5 years is $12709.</h3>
Step-by-step explanation:
Given that Landon bought a new car for $16,000 and it depreciates 4.5% every year.
<h3>To find the value C(t) of the car after 5 years:</h3>
Initial value 
Depreciation rate is 
<h3>∴ r=0.045</h3>
Period , t=5 years

Substitute the values we get



∴ 
<h3>The value C(t) of the car after 5 years is $
12709</h3>
To check if a relation is a function, given a mapping diagram of the relation, use the following criterion: If each input has only one line connected to it, then the outputs are a function of the inputs.
Answer:
the answer would be 32.
Step-by-step explanation:
add 11 to 85, then divide the number you get (96) by 3.
If <em>x</em>² + <em>y</em>² = 1, then <em>y</em> = ±√(1 - <em>x</em>²).
Let <em>f(x)</em> = |<em>x</em>| + |±√(1 - <em>x</em>²)| = |<em>x</em>| + √(1 - <em>x</em>²).
If <em>x</em> < 0, we have |<em>x</em>| = -<em>x</em> ; otherwise, if <em>x</em> ≥ 0, then |<em>x</em>| = <em>x</em>.
• Case 1: suppose <em>x</em> < 0. Then
<em>f(x)</em> = -<em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = -1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = -1/√2 → <em>y</em> = ±1/√2
• Case 2: suppose <em>x</em> ≥ 0. Then
<em>f(x)</em> = <em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = 1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = 1/√2 → <em>y</em> = ±1/√2
In either case, |<em>x</em>| = |<em>y</em>| = 1/√2, so the maximum value of their sum is 2/√2 = √2.
Answer:
the product is greater than 13/4
Step-by-step explanation:
5/2 x 13/4 = 8.125
13/4= 3.25
8.125>3.25