Answer:
1/4
25%
Step-by-step explanation:
Robert has 1/2 of the candy bar
If he gave his sister half, she has 1/2 x 1/2 = 1/4 of the candy bar
To convert 1/4 to percentage, multiply by 100
1/4 x 100 = 25%
Answer:
The solution to the system of equations (x, y) = (2, 4) represents the month in which exports and imports were equal. Both were 4 in February.
Step-by-step explanation:
We're not sure what "system of equations" is being referenced here, since no equations are shown or described.
__
Perhaps your "system of equations" is ...
f(x) = some equation
g(x) = some other equation
Then the solution to this system of equation is the pair of values (x, y) that gives ...
y = f(x) = g(x)
If x represents the month number, then the solution can be read from the table:
(x, y) = (2, 4)
This is the month in which exports and imports were equal. Both numbers were 4 in February.
Answer:
The 99% two-sided confidence interval for the average sugar packet weight is between 0.882 kg and 1.224 kg.
Step-by-step explanation:
We are in posession of the sample's standard deviation, so we use the student's t-distribution to find the confidence interval.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 16 - 1 = 15
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 35 degrees of freedom(y-axis) and a confidence level of
). So we have T = 2.9467
The margin of error is:
M = T*s = 2.9467*0.058 = 0.171
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 1.053 - 0.171 = 0.882kg
The upper end of the interval is the sample mean added to M. So it is 1.053 + 0.171 = 1.224 kg.
The 99% two-sided confidence interval for the average sugar packet weight is between 0.882 kg and 1.224 kg.
The propability is the least chance because it is the lowest time frame that it is on for
Answer

Solution
Simplify both sides of the equation.

We are left with d = 4+
Add

Hence, d = 