Answer:
Step-by-step explanation:
Given: MN ≅ MA
ME ≅ MR
Prove: ∠E ≅ ∠R
From the given diagram,
YN ≅ YA
EY ≅ RY
<EMA = <RMN (right angle property)
EA = EY + YA (addition property of a line)
NR = YN + RY (addition property of a line)
EA ≅ NR (congruent property)
ΔEMA ≅ ΔRMN (Side-Side-Side, SSS, congruence property)
<MNR ≅ MAE (angle property of congruent triangles)
Therefore,
<E ≅ <R (angle property of congruent triangles)
Add 3y and 4y: 7y=56
Divide by 7: y=8
Using the FOIL (First, Outside, Inner, Last) method, you multiply the two parenthesis together. First, you multiply x • x which = x^2, then outside, x • -3 = -3x. Next you multiply the inner number and variable, 2 • x = 2x, and finally the last values, 2 • -3 = -6. Then add all the values together (x^2 - 3x + 2x - 6) which equals the final answer x^2 - x - 6 :) Im not great at explaining but I hope this helps
Answer:
the answers A
Step-by-step explanation:
Here's the formula:
(y2-y1)/(x2-x1)
so then:
(p-3)/(21-9)
so:
p-3/(12)
so then p = 7