D = sqrt(3s^2) where s is the length of the side. Solving for s,
<span>3s^2 = d^2 iff </span>
<span>s^2 = d^2 / 3 iff </span>
<span>s = sqrt(d^2 / 3) </span>
<span>= d / sqrt(3) or d sqrt(3) / 3 </span>
<span>Surface area of the cube = 6 s^2. Thus, </span>
<span>A = 6 (d / sqrt(3))^2 </span>
<span>= 6d^2 / 3 </span>
<span>= 2d^2 </span>
<span>Volume = s^3. Thus, </span>
<span>V = (d / sqrt(3))^3 </span>
<span>= d^3 / 3sqrt(3) </span>
<span>= d^3 sqrt(3) / 9</span>
Answer:
Step-by-step explanation:
Chrissy can buy 8 mini appetizers.......because
45 - 20 = 25
25 divide 3 = 8.3333333333333 so the most she can buy is 8..
:)
Answer:
log 5
Step-by-step explanation:
We can rewrite this by using a property of logs
log a - log b = log (a/b)
log(10) - log(2)
log(10/2)
log 5
Answer:
382
Step-by-step explanation:
I can give you straight up answer.
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 