Answer:
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
Step-by-step explanation:
Given that;
the frequencies of there alternatives are;
Frequency A = 60
Frequency B = 12
Frequency C = 48
Total = 60 + 12 + 48 = 120
Now to determine our relative frequency, we divide each frequency by the total sum of the given frequencies;
Relative Frequency A = Frequency A / total = 60 / 120 = 0.5
Relative Frequency B = Frequency B / total = 12 / 120 = 0.1
Relative Frequency C = Frequency C / total = 48 / 120 = 0.4
therefore;
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
Answer:
<em>t = 1.51</em>
Step-by-step explanation:
<u>Exponential Model</u>
The exponential model is often used to simulate the behavior of a magnitude that either grow or decay in proportion to the existing amount of that magnitude.
The model can be expressed as

In this case, Mo is the initial mass of the radioactive substance and k is a constant which value is positive if the mass is growing or negative if the mass is decaying.
The value of k is not precisely given in the question, we are assuming 
The model is now

We are required to compute the time it takes the mass to reach one-half of its initial value:

Simplifying

Taking logarithms

Solving for t

Answer:
yes
Step-by-step explanation:
well first the complement I 90-19=71
and supplement is 180-19=161
Yes because 9+4 = 13 and if you plug in the y and x it turns out true