Let x represent the side length of the square end, and let d represent the dimension that is the sum of length and girth. Then the volume V is given by
V = x²(d -4x)
Volume will be maximized when the derivative of V is zero.
dV/dx = 0 = -12x² +2dx
0 = -2x(6x -d)
This has solutions
x = 0, x = d/6
a) The largest possible volume is
(d/6)²(d -4d/6) = 2(d/6)³
= 2(108 in/6)³ = 11,664 in³
b) The dimensions of the package with largest volume are
d/6 = 18 inches square by
d -4d/6 = d/3 = 36 inches long
76 is 80% of 95 and I'll even explain.
80/100 = 76/x from this point you cross multiply which gives you 80x = 76(100) you multiply 76 by 100 and get 7600 so then the equation look like this 80x = 7600 then divide by 80 on both sides and get the answer of x = 95 which is basically your answer I hope this helps :)
Membership is discounted $2 for first month
c=cost of one month
d=discount=$2
x=# of months
xc - 2= total cost
x for 1 month is 1, c is always 12, -2 is constant
1 x(12) - 2=10 for first month
8 months
8c -2=total cost for 8 months
8 x 12 - 2= 94 for 8 months