Step-by-step explanation:
Hey there!
The coordinates of a triangle are;
- A (1,2)
- B (1,-2)
- C (-2,-2)
- Scale factor = -4 and centre at (0,0)
Now, We have;
P(x,y)----------- P'(kx, ky)
<u>Keep</u><u> </u><u>formula</u><u>;</u>
<u>A</u><u>(</u><u>1</u><u>,</u><u>2</u><u>)</u><u>----------</u><u> </u><u>A'</u><u>(</u><u>-4</u><u>×</u><u>1</u><u> </u><u>,</u><u>-4</u><u>×</u><u>2</u><u>)</u>
= A'(-4, -8)
B(1,-2)------------- B'(-4,8)
C(-2,-2)-------------C'(8,8)
[ <u>The</u><u> </u><u>A'</u><u> </u><u>should</u><u> </u><u>be</u><u> </u><u>kept</u><u> </u><u>in</u><u> </u><u>(</u><u>-4</u><u>,</u><u>-</u><u>8</u><u>)</u><u>.</u><u> </u><u>There</u><u> </u><u>was</u><u> </u><u>no</u><u> </u><u>place</u><u> </u><u>in</u><u> </u><u>this</u><u> </u><u>graph</u><u> </u><u>so</u><u>,</u><u> </u><u>i</u><u> </u><u>kept</u><u> </u><u>it</u><u> </u><u>just</u><u> </u><u>below</u><u> </u><u>-7</u><u>.</u><u> </u><u>Please</u><u> </u><u>while</u><u> </u><u>plotting</u><u> </u><u>remember</u><u> </u><u>to</u><u> </u><u>keep</u><u> </u><u>it</u><u> </u><u>on</u><u> </u><u>"</u><u>-8"</u><u>.</u><u>]</u>
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em>
<span>3-2(Cosx)^2 - 3Sinx = 0.
Recall (Sinx)^2 + (Cosx)^2 = 1.
Therefore (Cosx)^2 = 1 - (Sinx)^2
Substitute this into the question above.
</span><span>3-2(Cosx)^2 - 3Sinx = 0
3 - 2(1 - (Sinx)^2) - 3Sinx = 0 Expand
3 - 2 + 2(Sinx)^2 - </span><span><span>3Sinx = 0</span>
1 + 2(</span><span>Sinx)^2 - 3Sinx = 0 Rearrange
2(Sinx)^2 </span><span><span>- 3Sinx + </span>1 = 0
Let p = Sinx
2p^2 - 3p + 1 = 0 Factorise the quadratic expression
2p^2 - p - 2p +1 = 0
p(2p -1) - 1(2p -1) = 0
(2p-1)(p -1) = 0
Therefore 2p-1=0 or (p-1) = 0
2p=0+1 or (p-1) = 0
2p=1 or p = 0 +1.
p=1/2 or p = 1 Recall p = Sinx
Therefore Sinx = 1/2 or 1.
For 0<u><</u>x<u><</u>360
Sinx =1/2, x = Sin inverse (1/2) , x = 30,
(180-30)- 2nd Quadrant = 150 deg
Sinx = 1, x = Sin inverse (1) , x = 90
Therefore x = 30,90 & 150 degrees.
Cheers.</span>
Answer:
about 0.177 mg/mL
Step-by-step explanation:
The maximum is found where the derivative of C(t) is zero.
dC/dt = 1.35e^(-2.802t) -(1.35t)2.802e^(-2.802t) = 0
Solving for t gives ...
t = 1/2.802
So, the maximum C(t) is ...
C(1/2.802) = 1.35/2.802e^(-1) ≈ 0.177 . . . . . mg/mL
The maximum average BAC during the first 6 hours is about 0.177 mg/mL.
_____
The maximum occurs about 21 minutes 25 seconds after consumption.
3k=7Q+6p
Solve for P which means we have to make 'p' alone

Given:
Two vectors (u) and (w) and the angle between them θ

the sketch of the vectors will be as shown in the following figure:
As shown, the resultant vector is the blue line segment
The vector R has a magnitude = 60.22
And the angle between u and R = 5.56°