Sum of angles In all triangles are 180....line DAC is horizontal and therefore is 180 degrees ....so minus 180 degrees from 105 and you get 75 degrees....and since the sum of all angles in a triangle is 180...add 75 and 67 which would be 142 degrees ...then minus 142 from 180 degrees to get 38 degrees for x
Answer:
the minimum sample size n = 11.03
Step-by-step explanation:
Given that:
approximate value of the population standard deviation
= 49
level of significance ∝ = 0.01
population mean = 38
the minimum sample size n = ?
The minimum sample size required can be determined by calculating the margin of error which can be re[resented by the equation ;
Margin of error = 





n ≅ 11.03
Thus; the minimum sample size n = 11.03
We are given that there are a total of 78 students. If we set the following variables:

Then, the sum of all of these must be 78, that is:

Since there are 15 in chemistry and physics and 47 in chemistry, we may replace that into the equation and we get:

Simplifying:

Now we solve for P by subtracting 62 on both sides:

Therefore, there are 16 students in physics
Answer:
5050
Step-by-step explanation:
Gauss has derived a formula to solve addition of arithmatic series to find the sum of the numbers from 1 to 100 as follows:
1 + 2 + 3 + 4 + … + 98 + 99 + 100
First he has splitted the numbers into two groups (1 to 50 and 51 to 100), then add these together vertically to get a sum of 101.
1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50
100 + 99 + 98 + 97 + 96 + … + 53 + 52 + 51
1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
:
:
:
:
48 + 53 = 101
49 + 52 = 101
50 + 51 = 101
It was realized by him that final total will be fifty times of 101 means:
50(101) = 5050.
Based on this, Gauss has derived formula as:
The sequence of numbers (1, 2, 3, … , 100) is arithmetic and we are looking for the sum of this series of sequence. As per Gauss, the special formula derived by him can be used to find the sum of this series:
S is the sum of the series and n is the number of terms in the series, in present case, from 1 to 100, Hence
As per the Gauss formula, the sum of numbers from 1 to 100 will be 5050.
Answer : 5050