Answer:
The data we have is:
The acceleration is 3.2 m/s^2 for 14 seconds
Initial velocity = 5.1 m/s
initial position = 0m
Then:
A(t) = 3.2m/s^2
To have the velocity, we integrate over time, and the constant of integration will be equal to the initial velocity.
V(t) = (3.2m/s^2)*t + 5.1 m/s
To have the position equation, we integrate again over time, and now the constant of integration will be the initial position (that is zero)
P(t) = (1/2)*(3.2 m/s^2)*t^2 + 5.1m/s*t
Now, the final position refers to the position when the car stops accelerating, this is at t = 14s.
P(14s) = (1/2)*(3.2 m/s^2)*(14s)^2 + 5.1m/s*14s = 385m
So the final position is 385 meters ahead the initial position.
I need you to send me the full question
Answer:
96 units^2
Step-by-step explanation:
The formula for the area of a triangle: b*h/2
b= 12
h= 16
Work:
12*16/2
192/2
96 uints^2
Answer:
n = 8
Step-by-step explanation:
-2n - 13 = -3n - 5
-2n + 3n = -5 + 13
n = 8
Hope this helps. Have a nice day!
To make a box and whisker plot, first you write down all of the numbers from least to greatest.
0, 1, 3, 4, 7, 8, 10
The median is 4, so that’s the middle line of the plot.
So now we have:
0, 1, 3, [4,] 7, 8, 10
So next we have to find the 1st and 3rd interquartiles..
0, [1,] 3, [4,] 7, [8,] 10
Those are the next 2 points you put on the plot.
Lastly, the upper and lower extremes. These are the highest and lowest numbers in the data.
[0,] 1, 3, 4, 7, 8, [10]
These are the final points on the plot.
To make the box of a box-and-whisker plot, you plot the 3 Medians of the data: 1, 4, and 8, and connect those to make a box that has a line in the middle at 4.
Next, you plot the upper and lower extremes: 0 and 10, by making “whiskers” that connect to the box. So you draw a line from the extremes to the box.