Answer:
<em>6, 10 and 8</em>
Step-by-step explanation:
Given the recursive function an = an-1-(an-2 - 4), when a5 =-2 and a6 = 0?
a6 = a5 - (a4 - 4)
0 = -2 - (14 - 4)
2 = - (a4 - 4)
-2 = a4 - 4
a4 = -2 + 4
a4 = 2
a5 = a4 - (a3 - 4)
-2 = 2 - (a3 - 4)
-2-2 = - (a3 - 4)
-4 = -(a3 - 4)
4 = a3 - 4
a3 = 4+4
a3 = 8
Also
a4 = a3 - (a2 - 4)
2 = 8 - (a2 - 4)
2-8 = - (a2 - 4)
-6 = -(a2 - 4)
6 = a2 - 4
a2 = 6+4
a2 = 10
a3 = a2 - (a1 - 4)
8 = 10 - (a1 - 4)
8-10 = - (a1 - 4)
-2 = -(a1 - 4)
2 = a1 - 4
a1 = 2+4
a1 = 6
<em>Hence the first 3 terms are 6, 10 and 8</em>
Well I don’t know if you want to know how to solve it but y = -8
Answer:
5593.75
Step-by-step explanation:
Answer:
81 times the original size.
Step-by-step explanation:
AA0ktA=3A0=?=?=25hours=A0ekt
Substitute the values in the formula.
3A0=A0ek⋅25
Solve for k. Divide each side by A0.
3A0A0=e25k
Take the natural log of each side.
ln3=lne25k
Use the power property.
ln3=25klne
Simplify.
ln3=25k
Divide each side by 25.
ln325=k
Approximate the answer.
k≈0.044
We use this rate of growth to predict the number of bacteria there will be in 100 hours.
AA0ktA=3A0=?=ln325=100hours=A0ekt
Substitute in the values.
A=A0eln325⋅100
Evaluate.
A=81A0
At this rate of growth, we can expect the population to be 81 times as large as the original population.