Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → A = π - (B + C)
→ B = π - (A + C)
→ C = π - (A + B)
Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]
Use the following Cofunction Identity: cos (π/2 - A) = sin A
<u>Proof LHS → RHS:</u>
LHS: sin A - sin B + sin C
= (sin A - sin B) + sin C




![\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BGiven%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%20-%28A%2BB%29%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%3D2%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B2%7D%20-%5Cdfrac%7B%28A%2BB%29%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BCofunction%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%20%5Csin%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B2%7D%5Cbigg%29%2B%5Csin%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B2%7D%5Cbigg%29%5Cbigg%5D)
![\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cqquad%202%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29%5Cbigg%5B%202%5Csin%20%5Cbigg%28%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BB%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D4%5Csin%20%5Cbigg%28%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BB%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Csin%20%5Cbigg%28%5Cdfrac%7BC%7D%7B2%7D%5Cbigg%29)

Answer:
1,542,682 cm^3.
Step-by-step explanation:
The scale factor = √169:√289
= 13:17
So the Volume ratio is 13^3:17^3
So the volume of the larger solid is 689,858 * (17^3/13^3)
= 1,542,682 cm^3.
Answer:
100 im pretty sure because 10 x 10 = 100
Answer: 5x+7
Step-by-step explanation:
2x+3x+7
5x+7
To solve this, follow these steps:
5x + 27 = 9 (x+3) - 4x
Distribute the 9 within the parenthesis:
5x + 27 = 9x + 27 - 4x
Then combine like terms:
5x + 27 = 5x + 27
These two then cancel each other out completely.
This is an identity because an identity in math is when both equations equal each other, which is shown above.
Hope this helps!