Answer:
outer width of trough = outer height of trough = x = 4ft
outer length of trough = 2x = 8ft
Step-by-step explanation:
Let,
x = outer width of trough = outer height of trough
Now, according to given condition:
2x = outer length of trough
Now we calculate the inner dimensions by subtracting the thickness (1 ft)
Therefore,
x - 2(1ft) = x - 2ft = inner width of trough (because 1ft from both sides will be subtracted)
x - 1ft = inner height of trough (because only bottom thickness will be subtracted)
2x - 2ft = inner length of trough (because 1ft from both sides will be subtracted)
Now, for the holding volume or inside volume of trough will be:
![Inner Volume = 36\ ft^3 = inner\ height*inner\ width*inner\ length \\36 = (x - 1)(x - 2)(2x - 2)\\36 = (x - 1)(2x^2 - 6x + 4)\\36 = (2x^3 - 6x^2 + 4x - 2x^2 + 6x - 4)\\36 = (2x^3 -8x^2 + 10x - 4) \\2x^3 -8x^2 + 10x - 40 = 0\\2x^2(x-4)+10(x-4) = 0\\(x-4)(2x^2+10) = 0\\](https://tex.z-dn.net/?f=Inner%20Volume%20%3D%2036%5C%20ft%5E3%20%3D%20inner%5C%20height%2Ainner%5C%20width%2Ainner%5C%20length%20%5C%5C36%20%3D%20%28x%20-%201%29%28x%20-%202%29%282x%20-%202%29%5C%5C36%20%3D%20%28x%20-%201%29%282x%5E2%20-%206x%20%2B%204%29%5C%5C36%20%3D%20%282x%5E3%20-%206x%5E2%20%2B%204x%20-%202x%5E2%20%2B%206x%20-%204%29%5C%5C36%20%3D%20%282x%5E3%20-8x%5E2%20%2B%2010x%20-%204%29%20%5C%5C2x%5E3%20-8x%5E2%20%2B%2010x%20-%2040%20%3D%200%5C%5C2x%5E2%28x-4%29%2B10%28x-4%29%20%3D%200%5C%5C%28x-4%29%282x%5E2%2B10%29%20%3D%200%5C%5C)
So, we will have three roots from this solution. Two, of them will be complex from the second factor. So, we ignore them and take the third one as our answer:
x - 4 = 0
x = 4ft
Now the outer dimensions will be:
<u>outer width of trough = outer height of trough = x = 4ft</u>
<u>outer length of trough = 2x = 8ft</u>