1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
12

Explain the difference between properties of equality and properties of inequality when solving equations and inequalities

Mathematics
2 answers:
algol [13]3 years ago
8 0

Answer: An equality is a statement of equal measure. It stands for an absolute statement, without any leeway. That is, there is only a set number of solutions they can take.

Here is an example: x + 17 = 20

In this case, x can only take one solution because it is an absolute statement. Obviously, these can change, but conceptually, they will contain a set of answers a variable can take.

An equality with degree of n will inevitably have n number of answers a variable can take.

However, there are more solutions x can take for an equality. This is because inequality signs are a broader set of equality signs.

Example: x + 17 > 20

In the previous example, there was only one solution that x can take, namely x = 3. However, if we have an inequality, we're merely finding all sets of values x can take that will keep this statement true. In this case, there are an infinite amount of solutions, provided x is greater than 3.

Properties of inequalities vs equalities

This segment is quite tricky to grasp, because we are so used to the equality. The hardest section is to determine when to change the inequality sign. Whenever we multiply or divide by a negative number, we must flip the sign.

Novosadov [1.4K]3 years ago
7 0

Answer:

THE HAMMER

Step-by-step explanation:

I fixed it!

You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
What is 78897039730932-48940989038902+9480234
olga55 [171]

Answer:

29956160172264

Step-by-step explanation:

I think this is the answer But i'm not sure tell me if its wrong

7 0
3 years ago
Please help with this. THank you
Over [174]

Answer:

8 ones quotient

0 one remaining

Step-by-step explanation:

there is no remaining

4 0
3 years ago
Read 2 more answers
Miguel has 3 times as many rabbits as Sarah. Miguel has 6 rabbits. How many rabbits does Sarah have?
ruslelena [56]
6/3=2
Sarah has 2 rabbits :)
6 0
3 years ago
Read 2 more answers
How to find z scores
AURORKA [14]

The formula for calculating a z-score is is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation

You can refer to this link for an example:

brainly.com/question/10334874?referrer=searchResults

8 0
2 years ago
Other questions:
  • Solve each system of inequalties by graphing.
    7·1 answer
  • people are waiting on line for a theater premiere. every 5th person in line will receive a free theater ticket. every 6th person
    10·2 answers
  • Brad and Wes are building a tree house.They cut a 12 1/2 foot piece of wood into 5 equally sized pieces.How long is each piece o
    11·1 answer
  • Which describes all possible values of f(x) in the function f(x) = √x/2? All real numbers all real numbers except for 0 all posi
    8·1 answer
  • Please help!! I'm really confused
    9·1 answer
  • What is another way to look at the circumference of a circle?
    6·1 answer
  • PLEASE HELP! 17 POINTS!
    8·2 answers
  • Pleasee help me i’ll give you brainliest
    13·2 answers
  • Plz help me with this
    8·1 answer
  • For a scavenger hunt, Jim's mom distributed a bag of 858 jelly beans evenly into 26 plastic containers and hid them around the y
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!