1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
3 years ago
5

PLEASE HELP ME ?!!!!!

Mathematics
1 answer:
cluponka [151]3 years ago
8 0

Answer:

b & c for sure

Step-by-step explanation:

............

You might be interested in
Jason ran 5/7 of the distance around the school track. Sara ran 4/5 of Jason's distance. What fraction of the total distance aro
masha68 [24]
Jason: 5/7
Sara: 4/5

Think of it this way: if the total track is a mile, and Jason runs 5/7 of it,  he has run 5/7 of a mile. Then Sara runs 4/5 OF 5/7, with "of" meaning "times," so she runs 4/5 x 5/7, which gives you 20/35, which simplifies to 4/7. You can also think of Sara's distance as 80 percent of Jason's. If she runs "80 percent of the sevenths that Jason ran," that means she ran 4 out of his 5 sevenths.
7 0
3 years ago
A system of two equations contains one quadratic equation and one linear equation. the quadratic system of the equation is y=x^2
ruslelena [56]
Suppose the line is y=mx+b
when x=3, y=15, so 15=3m+b
when x=-1, y=-13, so -13=-m+b
solve the system of these two equation, you get m=7, b=-6
so the linear equation is y=7x-6
7 0
3 years ago
Hitunglah nilai x ( jika ada ) yang memenuhi persamaan nilai mutlak berikut . Jika tidak ada nilai x yang memenuhi , berikan ala
Julli [10]

(a). The solutions are 0 and ⁸/₃.

(b). The solutions are 1 and ¹³/₃.

(c). The equation has no solution.

(d). The only solution is ²¹/₂₀.

(e). The equation has no solution.

<h3>Further explanation</h3>

These are the problems with the absolute value of a function.

For all real numbers x,

\boxed{ \ |f(x)|=\left \{ {{f(x), for \ f(x) \geq 0} \atop {-f(x), for \ f(x) < 0}} \right. \ }

<u>Problem (a)</u>

|4 – 3x| = |-4|

|4 – 3x| = 4

<u>Case 1</u>

\boxed{ \ 4 - 3x \geq 0 \ } \rightarrow \boxed{ \ 4\geq 3x \ } \rightarrow \boxed{ \ x\leq \frac{4}{3} \ }

For 4 – 3x = 4

Subtract both sides by four.

-3x = 0

Divide both sides by -3.

x = 0

Since \boxed{ \ 0\leq \frac{4}{3} \ }, x = 0 is a solution.

<u>Case 2</u>

\boxed{ \ 4 - 3x < 0 \ } \rightarrow \boxed{ \ 4 < 3x \ } \rightarrow \boxed{ \ x > \frac{4}{3} \ }

For -(4 – 3x) = 4

-4 + 3x = 4

Add both sides by four.

3x = 8

Divide both sides by three.

x = \frac{8}{3}

Since \boxed{ \ \frac{8}{3} > \frac{4}{3} \ }, \boxed{ \ x = \frac{8}{3} \ } is a solution.

Hence, the solutions are \boxed{ \ 0 \ and \ \frac{8}{3} \ }  

————————

<u>Problem (b)</u>

2|3x - 8| = 10

Divide both sides by two.

|3x - 8| = 5  

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x - 8 = 5

Add both sides by eight.

3x = 13

Divide both sides by three.

x = \frac{13}{3}

Since \boxed{ \ \frac{13}{3} \geq \frac{4}{3} \ }, \boxed{ \ x = \frac{13}{3} \ } is a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x – 8) = 5

-3x + 8 = 5

Subtract both sides by eight.

-3x = -3

Divide both sides by -3.

x = 1  

Since \boxed{ \ 1 < \frac{8}{3} \ }, \boxed{ \ x = 1 \ } is a solution.

Hence, the solutions are \boxed{ \ 1 \ and \ \frac{13}{3} \ }  

————————

<u>Problem (c)</u>

2x + |3x - 8| = -4

Subtracting both sides by 2x.

|3x - 8| = -2x – 4

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x – 8 = -2x – 4

3x + 2x = 8 – 4

5x = 4

x = \frac{4}{5}

Since \boxed{ \ \frac{4}{5} \ngeq \frac{8}{3} \ }, \boxed{ \ x = \frac{4}{5} \ } is not a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x - 8) = -2x – 4

-3x + 8 = -2x – 4

2x – 3x = -8 – 4

-x = -12

x = 12

Since \boxed{ \ 12 \nless \frac{8}{3} \ }, \boxed{ \ x = 12 \ } is not a solution.

Hence, the equation has no solution.

————————

<u>Problem (d)</u>

5|2x - 3| = 2|3 - 5x|  

Let’s take the square of both sides. Then,

[5(2x - 3)]² = [2(3 - 5x)]²

(10x – 15)² = (6 – 10x)²

(10x - 15)² - (6 - 10x)² = 0

According to this formula \boxed{ \ a^2 - b^2 = (a + b)(a - b) \ }

[(10x - 15) + (6 - 10x)][(10x - 15) - (6 - 10x)]] = 0

(-9)(20x - 21) = 0

Dividing both sides by -9.

20x - 21 = 0

20x = 21

x = \frac{21}{20}

The only solution is \boxed{ \ \frac{21}{20} \ }

————————

<u>Problem (e)</u>

2x + |8 - 3x| = |x - 4|

We need to separate into four cases since we don’t know whether 8 – 3x and x – 4 are positive or negative.  We cannot square both sides because there is a function of 2x.

<u>Case 1</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is positive  (or x - 4 > 0)

2x + 8 – 3x = x – 4

8 – x = x – 4

-2x = -12

x = 6

Substitute x = 6 into 8 – 3x ⇒ 8 – 3(6) < 0, it doesn’t work, even though when we substitute x = 6 into x - 4 it does work.

<u>Case 2</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is negative  (or x - 4 < 0)

2x + 8 – 3x = -(x – 4)

8 – x = -x + 4

x – x =  = 4 - 8

It cannot be determined.

<u>Case 3</u>

  • 8 – 3x is negative (or 8  - 3x < 0)
  • x – 4 is positive. (or x - 4 > 0)

2x + (-(8 – 3x)) = x – 4

2x – 8 + 3x = x - 4

5x – x = 8 – 4

4x = 4

x = 1

Substitute x = 1 into 8 - 3x, \boxed{ \ 8 - 3(1) \nless 0 \ }, it doesn’t work. Likewise, when we substitute x = 1 into x – 4, \boxed{ \ 1 - 4 \not> 0 \ }

<u>Case 4</u>

  • 8 – 3x is negative (or 8 - 3x < 0)
  • x – 4 is negative (or x - 4 < 0)

2x + (-(8 – 3x)) = -(x – 4)

2x – 8 + 3x = -x + 4

5x + x = 8 – 4

6x = 4

\boxed{ \ x=\frac{4}{6} \rightarrow x = \frac{2}{3} \ }

Substitute x = \frac{2}{3} \ into \ 8-3x, \boxed{ \ 8 - 3 \bigg(\frac{2}{3}\bigg) \not< 0 \ }, it doesn’t work. Even though when we substitute x = \frac{2}{3} \ into \ x-4, \boxed{ \ \bigg(\frac{2}{3}\bigg) - 4 < 0 \ } it does work.

Hence, the equation has no solution.

<h3>Learn more</h3>
  1. The inverse of a function brainly.com/question/3225044
  2. The piecewise-defined functions brainly.com/question/9590016
  3. The composite function brainly.com/question/1691598

Keywords: hitunglah nilai x, the equation, absolute  value of the function, has no solution, case, the only solution

5 0
3 years ago
Read 2 more answers
25) PLEASE HELP WITH QUESTION, WILL MARK BRAINLIEST + POINTS.
iogann1982 [59]
You take the three zeros and put them back with the x s 

(x-6)(x+5)(x-2)  they are reversed when you put them back in 

multiply the first two and get x^2+5x -6x-30(x-2) 
simplify to x^2-x-30(x-2)

Multiply it out again and get x^3-x^2-30x-2x^2+2x+60
finally simplify and get x^3-3x^2-28x+60 

So the answer is the first one

4 0
3 years ago
How much will it cost in Canadian dollars to purchase €2000 at a bank that charges a 2.2% commission on the transaction? Use an
Ivanshal [37]

Answer:

$2,874.25 Canadian dollar

Step-by-step explanation:

The first thing to do here is to calculate the amount of the commission.

That would be 2.2% of €2,000

= 2.2/100 * €2,000 = €44

Now the total cost to pay = selling price + amount in commissions = €2,000 + €44 = €2,044

But we need our answer in the Canadian dollars

Mathematically;

$1 Canadian = €0.711142

$x Canadian = €2,044

x = (2,044 * 1)/0.711142

x = 2,874.25014975912

This is approximately $2,874.25 Canadian dollar

4 0
3 years ago
Other questions:
  • Suppose each runner ran at the rate given in the table above for 3.1 miles. How much time will elapse between the first place fi
    8·1 answer
  • What is 40% of 50,000
    9·1 answer
  • A bag has 3 red marbles, 2 blue, 4 green and 1 yellow. What is the theoretical probability of pulling a red marble? Write your a
    7·1 answer
  • Find an equation of the line that (
    5·1 answer
  • PLS HELP (2.01)A polygon is shown on the graph:
    13·2 answers
  • What is the common ratio for the geometric sequence?<br> 32, 8, 2, 1/2,....
    9·1 answer
  • Simplify the following expressions.<br> 8x + 6y + 5x + 4y
    7·2 answers
  • Write your answer with no space and any fraction with “/“
    13·1 answer
  • Solve the following quadratic equations by any method. The solutions are:
    10·1 answer
  • At LaGuardia Airport for a certain nightly flight, the probability that it will rain is 0.14 and the probability that the flight
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!