1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
15

Find the value of y showing your steps or explaining your thinking. (2 pts.)​

Mathematics
1 answer:
makvit [3.9K]3 years ago
4 0

Answer:

y = 54

General Formulas and Concepts:

<u>Pre-Algebra </u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I </u>

  • Equality Properties

<u>Geometry </u>

  • Congruency
  • All angles in a triangle add up to 180°

Step-by-step explanation:

<u> Step 1: Define</u>

3(x + 7)° = 63°

3(x + 7)° + 63° + y° = 180°

<u>Step 2: Solve for x </u>

  1. Divide 3 on both sides:                    x + 7 = 21
  2. Subtract 7 on both sides:                 x = 14

<u>Step 3: Solve for </u><em><u>y</u></em>

  1. Substitute in <em>x</em>:                    3(14 + 7) + 63 + y = 180
  2. (Parenthesis) Add:              3(21) + 63 + y = 180
  3. Multiply:                               63 + 63 + y = 180
  4. Combine like terms:           y + 126 = 180
  5. Isolate <em>y</em>:                              y = 54
You might be interested in
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\&#10;S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\&#10;(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\&#10;\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\&#10;

but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=&#10;\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=&#10;\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\&#10;\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\&#10;S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\&#10;\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=&#10;(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=&#10;n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
4 years ago
Find the length of side x in simplest radical form with a rational denominator.
drek231 [11]

Step-by-step explanation:

\cos(30)  =  \frac{x}{ \sqrt{8} }  \\ x =  \sqrt{8}  \times  \cos(30)  = 2.45   =  \sqrt{6}

6 0
3 years ago
Standard form- 12 ten thousands, 8 thousands,14 hundreds,7 ones
Whitepunk [10]
129,407 because 12 ten thousands=120,0008 thousands= 8,00014 hundreds= 1,400No tens=07 ones=7
5 0
4 years ago
Elena and Jada are 24 miles apart on a path when they start moving toward each other. Elena runs at a constant speed of 5 miles
UNO [17]
It will take 3 hours
4 0
3 years ago
The area of a rectangle is 2x*2-13x+12 and another area is 6x^2-13x+21, what is the combined area of both rectangles?
saul85 [17]

Answer:

8x^2 - 26x + 33

Step-by-step explanation:

Add the expressions.

2x^2 - 13x + 12 + 6x^2 - 13x + 21 =

= 2x^2 + 6x^2 - 13x - 13x + 12 + 21

= 8x^2 - 26x + 33

8 0
3 years ago
Other questions:
  • Select the correct graph of -4x + 3y = 6.
    14·2 answers
  • What is 2+2-1x15+3. Help!!
    5·1 answer
  • How do you complete a square
    8·1 answer
  • Richard went to the store to buy some pencils and 2 packs of paper. Perry who went with Richard to the store, spent $30 on a mag
    13·2 answers
  • The table shows population statistics for the ages of Best Actor and Best Supporting Actor winners at an awards ceremony. The di
    8·1 answer
  • Karthik goes to office at 9.30 am and returns back at 6:00 pm.His lunch timings are 12:00 noon to 12:45 p.m.Rewrite these timing
    12·1 answer
  • Combine like terms to create an equivalent expression. 2/5m-4/5-3/5m
    5·1 answer
  • As an estimation we are told 5 miles is 8 km.<br> Convert 45 miles to km.
    7·2 answers
  • How many soulutions does -2(6-3x)=-12+6x have ?
    6·1 answer
  • Write the number 3.8 x 10-4 in standard form.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!