Answer:
its 100.43 centimeters
Step-by-step explanation:
That "ad^3" bothers me; I'm not sure what you mean here.
I'm going to assume that you have (1/4*a*d^3)^2.
If that's the case, then you have (1/4)^2 * a^2 * d^6 = (1/16)*a^2*d^6.
If this is not what you were hoping for, double check to ensure that you have copied down this problem exactly as it was presented.
<h2>
The area of a triangle is =54 square units</h2><h2>
The perpendicular distance from B to AC is = 
</h2>
Step-by-step explanation:
Given a triangle ABC with vertices A(2,1),B(12,2) and C(12,8)

The area of a triangle is= ![\frac{1}{2} [x_1(y_2-y_3) +x_2 (y_3- y_1)+x_3(y_1-y_2)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Bx_1%28y_2-y_3%29%20%2Bx_2%20%28y_3-%20y_1%29%2Bx_3%28y_1-y_2%29%5D)
=![|\frac{1}{2} [2(2-8+12(8-1)+12(1-2)]|](https://tex.z-dn.net/?f=%7C%5Cfrac%7B1%7D%7B2%7D%20%5B2%282-8%2B12%288-1%29%2B12%281-2%29%5D%7C)
=
= 54 square units
The length of AC = 
= 
=
units
Let the perpendicular distance from B to AC be = x
According To Problem

⇔
units
Therefore the perpendicular distance from B to AC is = 
Answer:
Step-by-step explanation:
Given that:
X(t) = be the number of customers that have arrived up to time t.
... = the successive arrival times of the customers.
(a)
Then; we can Determine the conditional mean E[W1|X(t)=2] as follows;




Now 
(b) We can Determine the conditional mean E[W3|X(t)=5] as follows;

Now; 
(c) Determine the conditional probability density function for W2, given that X(t)=5.
So ; the conditional probability density function of
given that X(t)=5 is:

Answer:
178
1900 = 5(x+202)
Step-by-step explanation:
Sasha= 5 times Bess and Jeremy
1900 = 5 (202 + X)
/5 /5
380 = 202 + x
-202 -202
178 = x