1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
9

What is 40% of 70 ounces ????​

Mathematics
2 answers:
sleet_krkn [62]3 years ago
7 0

Answer:

28

Step-by-step explanation:

the answer is 28 because 40 present of 70 is 28

frosja888 [35]3 years ago
6 0

Answer:

28 ounces

is the answer

You might be interested in
What is the midpoint of the line segment with endpoints (-1, 7) and (3, -3)?
Virty [35]

Answer:

(1, 2)

Step-by-step explanation:

5 0
3 years ago
The admission fee at the fair is $1.50 for children and $4 for adults. On a certain day, a total pf 2200 people entered the fair
Butoxors [25]

Answer: the picture

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Write the converse and the inverse of the statement: If today is New Year's Eve, then tomorrow is January.
maksim [4K]

Answer:

janeuary 1st

Step-by-step explanation:

the next day new years eve is always the dirst day before the first of the year

3 0
3 years ago
What is the length of a diagonal of a square that is 6 inches on each side
lubasha [3.4K]

Answer:

The answer is 6√2 inches

Step-by-step explanation:

Let

c = diagonal

a and b the sides of the square

c² = a² + b²

c = √(a² + b²)

c = √(6² + 6²)

c = √72

c = √(36 • 2)

c = 6√2

6 0
3 years ago
Convert the given system of equations to matrix form
yuradex [85]

Answer:

The matrix form of the system of equations is \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right] \left[\begin{array}{c}x&y&w&z&u\end{array}\right] =\left[\begin{array}{c}5&4&3\end{array}\right]

The reduced row echelon form is \left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

The vector form of the general solution for this system is \left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Step-by-step explanation:

  • <em>Convert the given system of equations to matrix form</em>

We have the following system of linear equations:

x+y+w+z-3u=5\\x-y-2w+z+2u=4\\2x+w-z+u=3

To arrange this system in matrix form (Ax = b), we need the coefficient matrix (A), the variable matrix (x), and the constant matrix (b).

so

A= \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right]

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]

b=\left[\begin{array}{c}5&4&3\end{array}\right]

  • <em>Use row operations to put the augmented matrix in echelon form.</em>

An augmented matrix for a system of equations is the matrix obtained by appending the columns of b to the right of those of A.

So for our system the augmented matrix is:

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\1&-1&-2&1&2&4\\2&0&1&-1&1&3\end{array}\right]

To transform the augmented matrix to reduced row echelon form we need to follow this row operations:

  • add -1 times the 1st row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\2&0&1&-1&1&3\end{array}\right]

  • add -2 times the 1st row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\0&-2&-1&-3&7&-7\end{array}\right]

  • multiply the 2nd row by -1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&-2&-1&-3&7&-7\end{array}\right]

  • add 2 times the 2nd row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&2&-3&2&-6\end{array}\right]

  • multiply the 3rd row by 1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -3/2 times the 3rd row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 3rd row to the 1st row

\left[\begin{array}{ccccc|c}1&1&0&5/2&-4&8\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 2nd row to the 1st row

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • <em>Find the solutions set and put in vector form.</em>

<u>Interpret the reduced row echelon form:</u>

The reduced row echelon form of the augmented matrix is

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

which corresponds to the system:

x+1/4\cdot z=3\\y+9/4\cdot z-4u=5\\w-3/2\cdot z+u=-3

We can solve for <em>z:</em>

<em>z=\frac{2}{3}(u+w+3)</em>

and replace this value into the other two equations

<em>x+1/4 \cdot (\frac{2}{3}(u+w+3))=3\\x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}</em>

y+9/4 \cdot (\frac{2}{3}(u+w+3))-4u=5\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}

No equation of this system has a form zero = nonzero; Therefore, the system is consistent. The system has infinitely many solutions:

<em>x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}\\z=\frac{2u}{3}+\frac{2w}{3}+2</em>

where <em>u</em> and <em>w</em> are free variables.

We put all 5 variables into a column vector, in order, x,y,w,z,u

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=\left[\begin{array}{c}-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}&\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}&w&\frac{2u}{3}+\frac{2w}{3}+2&u\end{array}\right]

Next we break it up into 3 vectors, the one with all u's, the one with all w's and the one with all constants:

\left[\begin{array}{c}-\frac{u}{6}&\frac{5u}{2}&0&\frac{2u}{3}&u\end{array}\right]+\left[\begin{array}{c}-\frac{w}{6}&-\frac{3w}{2}&w&\frac{2w}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Next we factor <em>u</em> out of the first vector and <em>w</em> out of the second:

u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

The vector form of the general solution is

\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

7 0
3 years ago
Other questions:
  • REASONING A rectangular box for a new product is designed in such a way that
    12·1 answer
  • . Gerald wants to borrow $12,000 in order to buy an engagement ring. He wants to repay the loan by making monthly installments f
    15·1 answer
  • A=12/35<br> B=35/37<br> C=35/12<br> D=12/37
    15·2 answers
  • The property tax rate is calculated by taking the total tax money needed ____ the total taxable value. 1. Subtracted from 2. Add
    10·2 answers
  • Two more than the product of a number and 6 is 8
    11·1 answer
  • A triangle has an area of 18ft squared. List all the possible positive integers that could represent its base and height. Use se
    14·1 answer
  • Using the equation ŷ = 2.6 − 3.1x, what is the predicted value if x is 4.3?
    11·1 answer
  • The table shows the ratio between the number of tickets ordered and their cost: Number of Tickets Cost (dollars) 5 20 7 28 9 36
    11·1 answer
  • Can two rectangles with the same side lengths be congruent
    8·2 answers
  • If 12% of the total amount is ₹108. what is the total amount
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!