Answer:
![(a)\ P(x \ge 215)](https://tex.z-dn.net/?f=%28a%29%5C%20P%28x%20%5Cge%20215%29)
![(b)\ P(x \ge 214.5) = 0.07353](https://tex.z-dn.net/?f=%28b%29%5C%20P%28x%20%5Cge%20214.5%29%20%3D%200.07353)
Step-by-step explanation:
Given
---- proportion of watches with defects
--- Number of watches
Solving (a): Represent at least 215 of 400 are defective
In inequalities, at least means: ![\ge](https://tex.z-dn.net/?f=%5Cge)
So, the probability is represented as: ![P(x \ge 215)](https://tex.z-dn.net/?f=P%28x%20%5Cge%20215%29)
Solving (b): Calculate ![P(x \ge 215)](https://tex.z-dn.net/?f=P%28x%20%5Cge%20215%29)
Normal or Poisson: Normal distribution is characterized by 2 parameters
and
.
These two parameters can be easily calculated from the given parameters in the question. So, we solve using normal distribution
Start by calculating the mean
![\mu =np](https://tex.z-dn.net/?f=%5Cmu%20%3Dnp)
![\mu = 0.50 * 400](https://tex.z-dn.net/?f=%5Cmu%20%3D%200.50%20%2A%20400)
![\mu = 200](https://tex.z-dn.net/?f=%5Cmu%20%3D%20200)
Calculate standard deviation
![\sigma = \sqrt{\mu (1 - p)](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B%5Cmu%20%281%20-%20p%29)
![\sigma = \sqrt{200 * (1 - 0.50)](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B200%20%2A%20%281%20-%200.50%29)
![\sigma = \sqrt{200 * 0.50](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B200%20%2A%20%200.50)
![\sigma = \sqrt{100](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B100)
![\sigma = 10](https://tex.z-dn.net/?f=%5Csigma%20%3D%2010)
By continuity correction, we have:
![x \to x - 0.5](https://tex.z-dn.net/?f=x%20%5Cto%20x%20-%200.5)
![x \to 215 - 0.5](https://tex.z-dn.net/?f=x%20%5Cto%20215%20-%200.5)
![x \to 214.5](https://tex.z-dn.net/?f=x%20%5Cto%20214.5)
So, we have:
![P(x \ge 215) = P(x \ge 214.5)](https://tex.z-dn.net/?f=P%28x%20%5Cge%20215%29%20%3D%20P%28x%20%5Cge%20214.5%29)
Calculating
, we have:
![P(x \ge 214.5) = 1 - P(x < z)](https://tex.z-dn.net/?f=P%28x%20%5Cge%20214.5%29%20%3D%201%20-%20P%28x%20%3C%20z%29)
Calculate z score
![z = \frac{x - \mu}{\sigma}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7Bx%20-%20%5Cmu%7D%7B%5Csigma%7D)
![z = \frac{214.5 - 200}{10}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B214.5%20-%20200%7D%7B10%7D)
![z = \frac{14.5}{10}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B14.5%7D%7B10%7D)
![z = 1.45](https://tex.z-dn.net/?f=z%20%3D%201.45)
So, we have:
![P(x \ge 214.5) = 1 - P(x < 1.45)](https://tex.z-dn.net/?f=P%28x%20%5Cge%20214.5%29%20%3D%201%20-%20P%28x%20%3C%201.45%29)
Using the z score probability table, we have:
![P(x < 1.45) = 0.92647](https://tex.z-dn.net/?f=P%28x%20%3C%201.45%29%20%3D%200.92647)
So, we have:
![P(x \ge 214.5) = 1 - 0.92647](https://tex.z-dn.net/?f=P%28x%20%5Cge%20214.5%29%20%3D%201%20-%200.92647)
![P(x \ge 214.5) = 0.07353](https://tex.z-dn.net/?f=P%28x%20%5Cge%20214.5%29%20%3D%200.07353)