The similarities between constructing a perpendicular line through a point on a line and constructing a perpendicular through a point off a line include:
- Both methods involve making a 90-degree angle between two lines.
- The methods determine a point equidistant from two equidistant points on the line.
<h3>What are perpendicular lines?</h3>
Perpendicular lines are defined as two lines that meet or intersect each other at right angles.
In this case, both methods involve making a 90-degree angle between two lines and the methods determine a point equidistant from two equidistant points on the line.
Learn more about perpendicular lines on:
brainly.com/question/7098341
#SPJ1
Answer:
The 95% CI for the difference of means is:

Step-by-step explanation:
<em>The question is incomplete:</em>
<em>"Find a 95% confidence interval on the difference of the towels mean absorbency produced by the two processes. Assumed that the standard deviations are estimated from the data. Round to two decimals places."</em>
Process 1:
- Sample size: 10
- Mean: 200
- S.D.: 15
Process 2:
- Sample size: 4
- Mean: 300
- S.D.: 50
The difference of the sample means is:

The standard deviation can be estimated as:

The degrees of freedom are:

The t-value for a 95% confidence interval and 12 degrees of freedom is t=±2.179.
Then, the confidence interval can be written as:

<em>I</em><em> </em><em>have</em><em> </em><em>attached</em><em> </em><em>the</em><em> </em><em>graph</em><em>!</em><em> </em>

Here are some details about the equation and the graph!
Details of equation ⤵️
- <u>The</u><u> </u><u>equation</u><u> </u><u>is</u><u> </u><u>written</u><u> </u><u>in</u><u> </u><u>slope-intercept</u><u> </u><u>form</u><u>.</u>
- <u>The</u><u> </u><u>slope</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>line</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>5</u><u>.</u>
- <u>The</u><u> </u><u>y-intercept</u><u> </u><u>is</u><u> </u><u>1</u><u>.</u>
Details of graph ⤵️
- <u>Root</u><u> </u><u>=</u><u> </u><u>(</u><u>2</u><u>,</u><u>0</u><u>)</u>
- <u>Domain</u><u> </u><u>=</u><u> </u><u>x</u><u>∈</u><u>R</u>
- <u>Range</u><u> </u><u>=</u><u> </u><u>y</u><u>∈</u><u>R</u>
- <u>Vertical</u><u> </u><u>intercept</u><u> </u><u>=</u><u> </u><u>(</u><u>0</u><u>,</u><u>1</u><u>)</u>