Answer:
(b) The interquartile range of B is greater than the interquartile range of A.
(d) The median of A is the same as the median of B.
Explanation:
Given
![A = \{1, 4, 2, 2, 3, 1, 1, 2, 1\}](https://tex.z-dn.net/?f=A%20%3D%20%5C%7B1%2C%204%2C%202%2C%202%2C%203%2C%201%2C%201%2C%202%2C%201%5C%7D)
![10th\ run = 9](https://tex.z-dn.net/?f=10th%5C%20run%20%3D%209)
So:
![B = \{1, 4, 2, 2, 3, 1, 1, 2, 1,9\}](https://tex.z-dn.net/?f=B%20%3D%20%5C%7B1%2C%204%2C%202%2C%202%2C%203%2C%201%2C%201%2C%202%2C%201%2C9%5C%7D)
Required
Select all true statements
(a) & (d) Median Comparisons
![B = \{1, 4, 2, 2, 3, 1, 1, 2, 1,9\}](https://tex.z-dn.net/?f=B%20%3D%20%5C%7B1%2C%204%2C%202%2C%202%2C%203%2C%201%2C%201%2C%202%2C%201%2C9%5C%7D)
![n = 10](https://tex.z-dn.net/?f=n%20%3D%2010)
Arrange the data:
![B = \{1,1,1,1,2,2,2,3,4,9\}](https://tex.z-dn.net/?f=B%20%3D%20%5C%7B1%2C1%2C1%2C1%2C2%2C2%2C2%2C3%2C4%2C9%5C%7D)
![Median = \frac{n + 1}{2}th](https://tex.z-dn.net/?f=Median%20%3D%20%5Cfrac%7Bn%20%2B%201%7D%7B2%7Dth)
![Median = \frac{10 + 1}{2}th](https://tex.z-dn.net/?f=Median%20%3D%20%5Cfrac%7B10%20%2B%201%7D%7B2%7Dth)
![Median = \frac{11}{2}th](https://tex.z-dn.net/?f=Median%20%3D%20%5Cfrac%7B11%7D%7B2%7Dth)
--- average of 5th and 6th
![Median = \frac{2+2}{2} = 2](https://tex.z-dn.net/?f=Median%20%3D%20%5Cfrac%7B2%2B2%7D%7B2%7D%20%3D%202)
Option (d) is correct because both have a median of: 2
(b) & (c) Interquartile Range Comparisons
![B = \{1,1,1,1,2,2,2,3,4,9\}](https://tex.z-dn.net/?f=B%20%3D%20%5C%7B1%2C1%2C1%2C1%2C2%2C2%2C2%2C3%2C4%2C9%5C%7D)
![n = 10](https://tex.z-dn.net/?f=n%20%3D%2010)
First, calculate the lower quartile (Q1)
[Odd n]
[Even n]
![Q_1 = \frac{10}{4}th](https://tex.z-dn.net/?f=Q_1%20%3D%20%5Cfrac%7B10%7D%7B4%7Dth)
![Q_1 = 2.5](https://tex.z-dn.net/?f=Q_1%20%3D%202.5)
This means that:
![Q_1 = 2nd + 0.5(3rd - 2nd)](https://tex.z-dn.net/?f=Q_1%20%3D%202nd%20%2B%200.5%283rd%20-%202nd%29)
![Q_1 = 1](https://tex.z-dn.net/?f=Q_1%20%3D%201)
Next, calculate the upper quartile (Q3)
[Odd n]
[Even n]
![Q_3 = \frac{30}{4}th](https://tex.z-dn.net/?f=Q_3%20%3D%20%5Cfrac%7B30%7D%7B4%7Dth)
This means that:
![Q_3 = 3](https://tex.z-dn.net/?f=Q_3%20%3D%203)
The interquartile range is ![IQR = Q_3 - Q_1](https://tex.z-dn.net/?f=IQR%20%3D%20Q_3%20-%20Q_1)
So, we have:
![IQR = 3 - 1](https://tex.z-dn.net/?f=IQR%20%3D%203%20-%201)
![IQR =2](https://tex.z-dn.net/?f=IQR%20%20%3D2)
(b) is true because B has a greater IQR than A
(e) This is false because some spread measures (which include quartiles and the interquartile range) changed when the 10th data is included.
The upper quartile and the interquartile range of A and B are not equal