1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GaryK [48]
2 years ago
12

Empty calorie foods:

Health
1 answer:
Veronika [31]2 years ago
4 0
Include foods high in sugar and fat
You might be interested in
Which of the following describes an ectomorph body type?
nexus9112 [7]
B) Long, slender, and may have difficulty gaining weight
6 0
3 years ago
Read 2 more answers
Differentiate the following functions (i) x(1+x)^3​
statuscvo [17]

Answer:

\displaystyle y' = (1 + x)^2(4x + 1)

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:                                                                \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = x(1 + x)³

<u>Step 2: Differentiate</u>

  1. Product Rule [Derivative Rule - Chain Rule]:                                                  \displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot \frac{d}{dx}[1 + x]
  2. Derivative Property [Addition/Subtraction]:                                                    \displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[x])
  3. Basic Power Rule:                                                                                             \displaystyle y' = x^{1 - 1} \cdot (1 + x)^3 + x \cdot 3(1 + x)^{3 - 1} \cdot (0 + x^{1 - 1})
  4. Simplify:                                                                                                             \displaystyle y' = (1 + x)^3 + 3x(1 + x)^2
  5. Factor:                                                                                                               \displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]
  6. Combine like terms:                                                                                         \displaystyle y' = (1 + x)^2(4x + 1)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Of these factors that influence one's health, people have the MOST control over their: O Stress level
Sauron [17]

Answer:

Lifestyle :)

Explanation:

6 0
3 years ago
Read 2 more answers
Question How can I get rid of a cough
viktelen [127]

Answer:

Cough syrup, soup, jello and honey

Explanation:

8 0
2 years ago
Read 2 more answers
Early Childhood-
Gnesinka [82]
The answer is D! Hope that helps!
3 0
3 years ago
Other questions:
  • Which of the following is likely to be least beneficial to an alcoholic?
    9·2 answers
  • Which active poses a risk to ones heath
    14·1 answer
  • List any five features of adolescent friendly sex and reproductive services?
    7·1 answer
  • Certain hallucinogenic drugs
    12·1 answer
  • Stress that relates directly to a particular incident or situation is known as:
    12·1 answer
  • HIV has become an important source of mortality for humans. If AIDS persists as a major factor for humans for many generations i
    6·1 answer
  • Which is a complex carbohydrate found in plants amino acid cholesterol saturated fat fiber
    11·1 answer
  • Billy, a five-year-old boy, sees his father applying shaving cream on his face while shaving his beard in front of a mirror. Bil
    11·1 answer
  • The medical term that means medication applied to the skin to obtain a local effect?
    8·1 answer
  • Analyzing the vitamin and mineral content of foods is an important step in developing good eating habits. Unfortunately, our fav
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!