Answer:
The dimensions of the rectangle = 60ft by 107ft
Where 60 ft = Width of the playing field
107ft = Length of the playing field
Step-by-step explanation:
A playing field is Rectangular is shape, hence,
The formula for Perimeter of a rectangle = 2(L + W)
P = 334 ft
L = 47 + W
W = W
Hence we input these values in the formula and we have:
334 = 2(47 + W + W)
334 = 2(47 + 2W)
334 = 94 + 4W
334 - 94 = 4W
240 = 4W
W = 240/4
W = 60
There fore, the width of this playing field = 60 ft
The length of this rectangle is calculated as:
47 + W
47 + 60
= 107 ft
The length of this playing field = 107ft
Therefore the dimensions of the rectangle = 60ft by 107ft
Atur ke arah cahaya wajah, dan ekspresikan wajah ke rumah yang diatur menjadi kotak tidak Kamu suka
Answer:8
Step-by-step explanation: Since the opposing way of solving is division, you divide 72 into 9 and you get 8.
Answer: look at the graph it shows you the answer
Step-by-step explanation:
can i get a brainliest
Answer:
"I can find the maximum or minimum by looking at the factored expression of a quadratic function by reading off its roots and taking the arithmetic average of them to obtain the
-coordinate of the quadratic function, and then substituting that value into the function."
Step-by-step explanation:
Because of the symmetry of quadratics (which is the case here because we have two factors of degree 1, so we are dealing with a <em>polynomial</em> of degree 2, which is a fancy way of saying that something is a quadratic), the
-coordinate of the extremum (a fancy way of saying maximum or minimum) is the (arithmetic) average of the two roots.
In the factored form of a quadratic function, we can immediately read the roots: 3 and 7. Another way to see that is to solve
, which gives
(the 'V' stands for 'or'). We can take the average of the two roots to get the
-coordinate of the minimum point of the graph (which, in this case, is
).
Having the
-coordinate of the extremum, we can substitute this value into the function to obtain the maximum or minimum point of the graph, because that will give the
-coordinate of the extremum.