Step-by-step explanation:
pls can you give me the answer I want to be sure
The values on the number line are between 0 and 1. There are 8 points from 0. The distance between two consecutive points would be
1/8 = 0.125
Since the given point is on the second point after 0, the equivalent value would be
2 * 1/8 = 2/8
Dividing the numerator and denominator of 2/8 by 2, we have 1/4
Thus, the two equivalent fractions for the point on number line are
2/8 and 1/4
The answer is A. True hope this right
Answer:
1. 15 - 5n where n>=1
2. n² where n>=1
Step-by-step explanation:
1. {10, 5, 0, -5, -10} is an Arithmetic Progression
nth term is a + (n - 1)d
where a = first term, n= nth term, d= common difference.
a = 10, d = -5 (5-10, 0-5, -5-0, -10-(-5))
Therefore, nth(General) term of the sequence:
= 10 + (n - 1)-5
= 10 + (-5n) + 5
= 10 + 5 - 5n
= 15 - 5n
Test:
if n = 1; 15 - 5(1) = 10
if n = 2; 15 - 5(2) = 5
if n = 3; 15 - 5(3) = 0 and so on.
2. {1, 4, 9, 16, 25}
The general term of the sequence is n²
Test:
if n = 1; 1² = 1
if n = 2; 2² = 4
if n = 3; 3² = 9 and so on.
<h3>
Answer:</h3>
System
Solution
- p = m = 5 — 5 lb peanuts and 5 lb mixture
<h3>
Step-by-step explanation:</h3>
(a) Generally, the equations of interest are one that models the total amount of mixture, and one that models the amount of one of the constituents (or the ratio of constituents). Here, there are two constituents and we are given the desired ratio, so three different equations are possible describing the constituents of the mix.
For the total amount of mix:
... p + m = 10
For the quantity of peanuts in the mix:
... p + 0.2m = 0.6·10
For the quantity of almonds in the mix:
... 0.8m = 0.4·10
For the ratio of peanuts to almonds:
... (p +0.2m)/(0.8m) = 0.60/0.40
Any two (2) of these four (4) equations will serve as a system of equations that can be used to solve for the desired quantities. I like the third one because it is a "one-step" equation.
So, your system of equations could be ...
___
(b) Dividing the second equation by 0.8 gives
... m = 5
Using the first equation to find p, we have ...
... p + 5 = 10
... p = 5
5 lb of peanuts and 5 lb of mixture are required.