Rewrite <span>2cos x + 1 = 0 as:
2 cos x = -1, and then cos x = -1/2
x must be in Quadrant II or Quadrant III, since the adj. side is negative.
Note that the angle 120 has adj. side -1 and hyp 2. So 120 degrees is one solution.
Now what about a possible 2nd solution, to be found in Quadrant III? That would be -120 degrees, which has the same terminal line as does 240 degrees.
No soap.
So, the solution is 120 degrees.</span>
Joanna would have spent $8.94 on apples at the farmers market.
Answer:
C
Step-by-step explanation:
Okay! Time to use the Pythagoras theorem.
a^2 + b^2 = c^2
4^2 + 7^2 = x^2
16 + 49 = c^2
65 = c^2
Let's take the square root of both sides to get
c ~ 8.06
C
:)
Answer:
25
Step-by-step explanation:
let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B6%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B6%5E2-5%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B36-25%7D%5Cimplies%20%5Cpm%20%5Csqrt%7B11%7D%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
