Hello!
To solve this problem, we will use a system of equations. We will have one number be x and the other y. We will use substitutions to solve for each variable.
x+y=9
x=2y-9
To solve for the two numbers, we need to solve the top equation. The second equation shows that x=2y-9. In the first equation, we can replace 2y-9 for x and solve.
2y-9+y=9
3y-9=9
3y=18
y=6
We now know the value of y. Now we need to find x. We can plug in 6 for y in the second equation to find x.
x=2·6-9
x=12-9
x=3
Just to check, we will plug these two numbers into the first equation.
3+6=9
9=9
Our two numbers are three and six.
I hope this helps!
The correct answer is A) g≥5
This is because when you look at an absolute value function, the constant at the end is the y value of the vertex. Since it is an absolute value equation, we know that the values can only go up. Therefore, it must be greater than or equal to the constant at the end (5)
43 47 53 59 are the prime numbers
Answer:
-9
Step-by-step explanation:
+49/-7=-7
-2-7=-9
The percentage of young adults send between 128 and 158 text messages per day is; 34%
<h3>How to find the percentage from z-score?</h3>
The distribution is approximately Normal, with a mean of 128 messages and a standard deviation of 30 messages.
We are given;
Sample mean; x' = 158
Population mean; μ = 128
standard deviation; σ = 30
We want to find the area under the curve from x = 248 to x = 158.
where x is the number of text messages sent per day.
To find P(158 < x < 248), we will convert the score x = 158 to its corresponding z score as;
z = (x - μ)/σ
z = (158 - 128)/30
z = 30/30
z = 1
This tells us that the score x = 158 is exactly one standard deviation above the mean μ = 128.
From online p-value from z-score calculator, we have;
P-value = 0.34134 = 34%
Approximately 34% of the the population sends between 128 and 158 text messages per day.
Read more about p-value from z-score at; brainly.com/question/25638875
#SPJ1