Answer:
Step-by-step explanation:
Answer is C
We need to find oblique asymtotes of f(x).
Oblique asymtotes form when degree of numerator is greater than denominator.
First we find the degree of numerator and denominator for f(x)
Degree of f(x) at numerator = 2
Degree of f(x) at denominator = 1
So, one oblique asymtote form.
First we divide by
Quoetient of the above division would be oblique asymtote.
First we find the degree of numerator and denominator for f(x)
Degree of f(x) at numerator = 2
Degree of f(x) at denominator = 1
So, one oblique asymtote form.
<h2>
Answer:</h2>
![\boxed{15.4z-12}](https://tex.z-dn.net/?f=%5Cboxed%7B15.4z-12%7D)
<h2>
Explanation:</h2>
Here we have the following expression:
![7.4z-5(-1.6z+2.4)](https://tex.z-dn.net/?f=7.4z-5%28-1.6z%2B2.4%29)
We combine like terms in order to simplify expression. To do so, we combine terms with the same variable and exponents. In this exercise, let's apply distributive property first:
![7.4z-5(-1.6z)-5(2.4) \\ \\ Remember \ these \ rules: \\ \\ (+)(+)=+ \\ \\ (-)(-)=+ \\ \\ (-)(+)=+ \\ \\ (+)(-)=- \\ \\ \\ So: \\ \\ 7.4z+8z-12 \\ \\ \\ Combining \ like \ terms \ 7.4z \ and \ 8z: \\ \\ \boxed{15.4z-12}](https://tex.z-dn.net/?f=7.4z-5%28-1.6z%29-5%282.4%29%20%5C%5C%20%5C%5C%20Remember%20%5C%20these%20%5C%20rules%3A%20%5C%5C%20%5C%5C%20%28%2B%29%28%2B%29%3D%2B%20%5C%5C%20%5C%5C%20%28-%29%28-%29%3D%2B%20%5C%5C%20%5C%5C%20%28-%29%28%2B%29%3D%2B%20%5C%5C%20%5C%5C%20%28%2B%29%28-%29%3D-%20%5C%5C%20%5C%5C%20%5C%5C%20So%3A%20%5C%5C%20%5C%5C%207.4z%2B8z-12%20%5C%5C%20%5C%5C%20%5C%5C%20Combining%20%5C%20like%20%5C%20terms%20%5C%207.4z%20%5C%20and%20%5C%208z%3A%20%5C%5C%20%5C%5C%20%5Cboxed%7B15.4z-12%7D)
Answer:
the answer is -4 because the Y values are going down 4 at a time.
Answer:
k ±16
Step-by-step explanation:
Evaluate x^2 + 8 x + k where x = -4:
x^2 + 8 x + k = k - 4 8 + (-4)^2
(-4)^2 = 16:
k - 4 8 + 16
8 (-4) = -32:
k + -32 + 16
Grouping like terms, k - 32 + 16 = k + (16 - 32):
k + (16 - 32)
16 - 32 = -16:
Answer: k ±16