Check the picture below.
so we can say that two sides are "4" each in length, since opposite sides are equal, let's find how long the slanted sides are.
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[3 - (-4)]^2 + [5 - 2]^2}\implies d=\sqrt{(3+4)^2+3^2} \\\\\\ d=\sqrt{49+9}\implies d=\sqrt{58} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Perimeter}}{4~~ + ~~4~~ + ~~\sqrt{58}~~ + ~~\sqrt{58}\implies 8+2\sqrt{58}}](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%5B3%20-%20%28-4%29%5D%5E2%20%2B%20%5B5%20-%202%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B4%29%5E2%2B3%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B49%2B9%7D%5Cimplies%20d%3D%5Csqrt%7B58%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeter%7D%7D%7B4~~%20%2B%20~~4~~%20%2B%20~~%5Csqrt%7B58%7D~~%20%2B%20~~%5Csqrt%7B58%7D%5Cimplies%208%2B2%5Csqrt%7B58%7D%7D)
Answer:
a
Step-by-step explanation:
-5/9 ÷ 5/7
= -5/9 × 7/5
= -7/9
The answer should be a
Answer:
0.006 miles per hour
Step-by-step explanation:
We are given;
Speed in cm per minute ( 17 cm per min)
We are required to convert cm per minute to miles an hour
we need to know that;
1 miles = 160934 cm
1 hour = 60 minutes
We can convert 17 cm to miles and 1 minute to hours
17 cm = 17 ÷ 160934 cm
= 17/160934
1 minute = 1/60 hour
Therefore;
In miles per hour;
= (17/160934) ÷ (1/60)
= 0.00634 miles per hour
= 0.006 miles per hour
Therefore, 17 cm per minute is equivalent to 0.006 miles per hour
<span>Divide by 3 and get x<1, so the answer is {x | x < 1}
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>