<h2><u>
Heart and lungs:</u></h2>
The upper chamber of the heart is called atrium and lower chamber of the heart is called ventricles.
The blood circulation in the heart is basically under the functioning of three blood vessels namely:
<h3><u>Arteries:
</u></h3>
- They start with the aorta, the huge vein leaving the heart.
- Veins divert oxygen-rich blood from the heart to the majority of the body's tissues.
- They branch a few times, decreasing and littler as they convey blood more remote from the heart.
<h3><u>Capillaries:
</u></h3>
- These are little; flimsy blood vessels that associate the arteries and the veins.
- Their dainty dividers permit oxygen, supplements, carbon dioxide, and other waste items to go to and from our organ's cells.
<h3><u>Veins:
</u></h3>
- These are the blood vessels that return blood to the heart; this blood needs (oxygen-poor) and is wealthy in waste items that are to be discharged or expelled from the body.
- Veins become bigger and bigger as they draw nearer to the heart.
- The unrivaled vena cava is the huge vein that brings blood from the head and arms to the heart, and the second rate vena cava brings blood from the mid-region and legs into the heart.
Salutations!
The two biomes that are the most similar with regard to rainfall is desert and tundra. Tundra is the coldest biome, its tree less with very little nutrients, precipitation and seasons often remain the same. Desert is very hot in the day, but very cold at night, it receives less rainfall and has very strong winds.
Hope I helped (:
have a great day!
Answer
a balance and a graduated cylinder
Explanation
Density is mass per unit and it is property characteristic of a substance. The arrangement of the mass of atoms and their size is what determines the the density of a substance.
For a student to measure the density of seawater he/she is required to use a balance and a graduated cylinder where a balance will be used to measure the mass of the mineral sample and then a graduated cylinder to determine the volume.
Answer:
Kingdom:AnimaliaPhylum:ArthropodaClass:InsectaOrder:LepidopteraSuperfamily:NoctuoideaFamily:ErebidaeSubfamily:ArctiinaeGenus:NyctemeraSpecies:
N. kinibalina
Answer:
a. Decrease water reabsorption
: decrease blood pressure.
b. Decrease peripheral resistance
: decrease blood pressure
c. Vasodilation
: decrease blood pressure
d. Decrease salt intake
: decrease blood pressure
e. Decrease blood volume
: decrease blood pressure
f. Vasoconstriction
: increase blood pressure
g. Increase peripheral resistance: increase blood pressure
h. Increase salt intake: increase blood pressure
i. Increase blood volume
: increase blood pressure
j. Increase water reabsorption: increase blood pressure
Explanation:
- Total peripheral resistance: This term refers to the resistance offered by the vascular system to the blood flow. This resistance is a result of the friction between the blood and the vessel's walls. In other words, it is the opposition of the vessels to blood flow. The total peripheral resistance is the summary of all the bloody circuit resistances in the body. Those mechanisms that induce vasoconstriction conduce to an increase in total peripheral resistance, while mechanisms that induce vasodilation provoke a decrease in total peripheral resistance.
- Blood pressure: This term refers to the strength applied by the blood against the vessel walls as it flows. This pressure is determined by the bombed blood strength and the volume as well as by the vessel size and flexibility. Blood pressure changes continuously according to the activity, temperature, diet, emotional state, among others.
- Salt ingestion causes an increase in plasmatic osmolarity, stimulates thirst, and hence, water ingestion. Sodium retains water, expanding the blood volume and causing an increase in vessel pressure.
- The antidiuretic hormone, also known as vasopressin hormone, is released by changes in serum osmolarity or blood volume. Its function is to keep homeostasis and make kidneys conserve or keep water by concentrating urine and by reducing its volume. By these actions, the antidiuretic hormone stimulates water reabsorption, according to the organism´s needs.
- Kidneys control blood pressure in many ways. If the pressure is elevated, kidneys produce the loss of salt and water, normalizing arterial pressure. But if pressure is low, kidneys conserve water.