Check the picture below to the left, let's use those sides with the law of sines
![\textit{Law of sines} \\\\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{sin(14^o)}{97}=\cfrac{sin(84^o)}{XZ}\implies XZ = \cfrac{97\cdot sin(84^o)}{sin(14^o)}\implies XZ \approx 398.76 \\\\\\ \stackrel{\textit{now using SOH CAH TOA}}{cos(82^o) = \cfrac{XW}{XZ}}\implies XZcos(82^o)=XW \\\\\\ 398.76cos(82^o)\approx XW\implies 55.497\approx XW\implies \stackrel{\textit{rounded up}}{55=XW}](https://tex.z-dn.net/?f=%5Ctextit%7BLaw%20of%20sines%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Cmeasuredangle%20A%29%7D%7Ba%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20B%29%7D%7Bb%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20C%29%7D%7Bc%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bsin%2814%5Eo%29%7D%7B97%7D%3D%5Ccfrac%7Bsin%2884%5Eo%29%7D%7BXZ%7D%5Cimplies%20XZ%20%3D%20%5Ccfrac%7B97%5Ccdot%20sin%2884%5Eo%29%7D%7Bsin%2814%5Eo%29%7D%5Cimplies%20XZ%20%5Capprox%20398.76%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bnow%20using%20SOH%20CAH%20TOA%7D%7D%7Bcos%2882%5Eo%29%20%3D%20%5Ccfrac%7BXW%7D%7BXZ%7D%7D%5Cimplies%20XZcos%2882%5Eo%29%3DXW%20%5C%5C%5C%5C%5C%5C%20398.76cos%2882%5Eo%29%5Capprox%20XW%5Cimplies%2055.497%5Capprox%20XW%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B55%3DXW%7D)
120.
To find out how much gas he is using per day, you can use 75/5 which comes to 15. Then multiplying 15 with the 8 days, you get a sum of 120.
Answer:
The easiest approach is to realise that one hour is 3 times longer than 20 minutes. The longer the time, the more they will pave.
215 of a mile, in 20 minutes, how much in 60 minutes?#
They will pave 3 times more.
215×31=615 of a mile
615=25 of a mile
You could also use the 'unitary method' where you find out how much they pave in ONE minute (divide by 20) and them multiply by 60 to find how much in one hour.
Look at what happens:
215÷20×60
=215×120×603
=215×3 ← exactly the same maths.
=25
Given

To find the derivative of the give function,we apply below exponent rule first:

So,
Next, we apply the chain rule:
So,
We substitute back u=(5x-6):
Simplify:
Therefore, the answer is: