Answer:
Step-by-step explanation:
I'll show you how to do the first one; the other are exactly the same, so pay attention.
The formula for arc length is
where θ is the central angle's measure. It just so happens that the measure of the central angle is the same as the measure of the arc it intercepts. Our arc shows a measure of 40°; this measure is NOT the same as the length. Measures are in degrees while length is in inches, or cm, or meters, etc. Going off that info, our central angle measures 40°. Filling in the formula and using 3.1415 for π:
. I'm going to reduce that fraction a bit (and I'll use the same reduction in the Area of a sector coming up next):
which makes
AL = 2.09 units. Now for Area of the Sector. The formula is almost identical, but instead uses the idea that the area of a circle is πr²:
where θ is, again, the measure of the central angle (which is the same as the measure of the arc it intercepts). Filling in:
which simplifies a bit to
. As you can see, the 9's cancel each other out, leaving you with
units²
Answer:
50
Step-by-step explanation:
So you can think of this by grouping it like this:
(1-2) + (3-4) + (5-6) + ... + (97-98) + 99
which is equal to: (-1) + (-1) + (-1)... + (-1) + 99
(each group is equal to -1, and 99 won't have a pair since it's the last one)
then, find how many groups of -1 there are:
the groups start at 1 and end at 98, but there are two in each group, so 98/2 = 49. this means there are 49 groups.
so now, you know that there are 49 -1s, so 49 * (-1) = -49.
finally, you can't forget the extra 99 that didn't have a pair, so -49 + 99 = 50.
T is equal to any number just choose one. In the end they both end up with t+1. I hope my answer is correct and sorry for my handwriting.