<h2>
Answer:</h2>
This is impossible to solve.
<h2>
Step-by-step explanation:</h2>
For an equation or inequality to be solvable, there must be the same number of inequalities as variables. Here, there is an x and there is a y. This means that you need at least two inequalities to solve it.
You can, however, rearrange to get x or y on one side.
This can be done for x:
5x < 10 + 2y
x < 2 + 2/5y
Or it can be done for y:
5x < 10 + 2y
5x - 10 < 2y
2.5x - 5 < y
Answer: Y= 8x + 2.8
Step-by-step explanation: slope is 8 (think rise over run) and y-intercept seems to be 2.8, heh hope that helped
Answer:
180°
Step-by-step explanation:
I think this is the answer
because the line is straight from the point ACE
see
Given a solution

, we can attempt to find a solution of the form

. We have derivatives



Substituting into the ODE, we get


Setting

, we end up with the linear ODE

Multiplying both sides by

, we have

and noting that
![\dfrac{\mathrm d}{\mathrm dx}\left[x(\ln x)^2\right]=(\ln x)^2+\dfrac{2x\ln x}x=(\ln x)^2+2\ln x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bx%28%5Cln%20x%29%5E2%5Cright%5D%3D%28%5Cln%20x%29%5E2%2B%5Cdfrac%7B2x%5Cln%20x%7Dx%3D%28%5Cln%20x%29%5E2%2B2%5Cln%20x)
we can write the ODE as
![\dfrac{\mathrm d}{\mathrm dx}\left[wx(\ln x)^2\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bwx%28%5Cln%20x%29%5E2%5Cright%5D%3D0)
Integrating both sides with respect to

, we get


Now solve for

:


So you have

and given that

, the second term in

is already taken into account in the solution set, which means that

, i.e. any constant solution is in the solution set.