Lim x tends to π÷2 , then what is the value of (tanx + cotx) ÷ ( tanx - cotx)
1 answer:
(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
You might be interested in
Answer:option 3
Step-by-step explanation:i got it right
Answer:
105+15=3x
120=3x
x=40
be grateful, I don't help ppl usually
The sum of -5a and 3 is greater than 1
Answer:
jhhj
Step-by-step explanation:
hjj