The graph with the equation y=0.45x because the line goes through the orgin
With the given information, we can create several equations:
120 = 12x + 2y
150 = 10x + 10y
With x being the number of rose bushes, and y being the number of gardenias.
To find the values of the variables, we can use two methods: Substitution or Elimination
For this case, let us use elimination. To begin, let's be clear that we are going to be adding these equations together. Therefore, in order to get the value of one variable, we must cancel one of them out - it could be x or y, it doesn't matter which one you decide to cancel out. Let's cancel the x out:
We first need to multiply the equations by numbers that would cause the x's to cancel out - and this can be done as follows:
-10(120 = 12x + 2y)
12(150 = 10x + 10y) => Notice how one of these is negative
Multiply out:
-1200 = -120x - 20y
+ 1800 = 120x + 120y => Add these two equations together
---------------------------------
600 = 100y
Now we can solve for y:
y = 6
With this value of y known, we can then pick an equation from the beginning of the question, and plug y in to solve for x:
120 = 12x + 2y => 120 = 12x + 2(6)
Now we can solve for x:
120 = 12x + 12 => 108 = 12x
x = 9
So now we know that x = 9, and y = 6.
With rose bushes being x, we now know that the cost of 1 rose bush is $9.
With gardenias being y, we now know that the cost of 1 gardenia is $6.
Answer:
x = 24
Step-by-step explanation:
1/6 x + 3 = 7
1/6 x = 4
x = 24
Answer:31 dived by 81 is 0.3703
Step-by-step explanation:
Answer:
a. P(X=50)= 0.36
b. P(X≤75) = 0.9
c. P(X>50)= 0.48
d. P(X<100) = 0.9
Step-by-step explanation:
The given data is
x 25 50 75 100 Total
P(x) 0.16 0.36 0.38 0.10 1.00
Where X is the variable and P(X) = probabililty of that variable.
From the above
a. P(X=50)= 0.36
We add the probabilities of the variable below and equal to 75
b. P(X≤75) = 0.16+ 0.36+ 0.38= 0.9
We find the probability of the variable greater than 50 and add it.
c. P(X>50)= 0.38+0.10= 0.48
It can be calculated in two ways. One is to subtract the probability of 100 from total probability of 1. And the other is to add the probabilities of all the variables less than 100 . Both would give the same answer.
d. P(X<100)= 1- P(X=100)= 1-0.1= 0.9